dear members, I have the following nls call:> HF53nl <- nls(HF1 ~ ((m/HF6) + 1),data = data.frame(HF6,HF1),start = list(m = 0.1)) > overview(HF53nl)------ Formula: HF1 ~ ((m/HF6) + 1) Parameters: Estimate Std. Error t value Pr(>|t|) m 2.147e-07 1.852e-06 0.116 0.908 Residual standard error: 0.03596 on 799 degrees of freedom Number of iterations to convergence: 1 Achieved convergence tolerance: 1.246e-06 ------ Residual sum of squares: 1.03 ------ t-based confidence interval: 2.5% 97.5% 1 -3.420983e-06 3.850292e-06 ------ Correlation matrix: m m 1 The scatter plot of HF6 and HF1 and the corresponding fitted line according to the above output of nls is attached(HF53nl). The fitted line is almost a straight line. But it should be a curve something of: y ~ 1/x. I think the very small value of m is making the curve a straight line. But the fitted curve of the following call makes sense(attached: HF43nl):> HF43nl <- nls(HF1 ~ ((k/HF5) + 1),data = data.frame(HF5,HF1),start = list(k = 0.1)) > overview(HF43nl)------ Formula: HF1 ~ ((k/HF5) + 1) Parameters: Estimate Std. Error t value Pr(>|t|) k -5.367e-04 5.076e-05 -10.57 <2e-16 *** --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 Residual standard error: 0.03368 on 799 degrees of freedom Number of iterations to convergence: 1 Achieved convergence tolerance: 3.076e-07 ------ Residual sum of squares: 0.906 ------ t-based confidence interval: 2.5% 97.5% 1 -0.0006363717 -0.0004370954 ------ Correlation matrix: k k 1 The queer thing is that the RSS for HF53nl and HF43nl is almost the same, which points to the purported validity of HF53nl. How is this possible? Can I go with the above estimates for the coefficient m of HF6 being equal to 2.147 * 10^(-7)? How do I make an nls call so that there is a better fit to HF1 and HF6. NB: If you can't access the attached graphs, how do I send it to you otherwise? I can also give you HF1,HF6,HF5 if needed.... very many thanks for your time and effort.... yours sincerely, AKSHAY M KULKARNI -------------- next part -------------- A non-text attachment was scrubbed... Name: HF53nl.png Type: image/png Size: 11024 bytes Desc: HF53nl.png URL: <https://stat.ethz.ch/pipermail/r-help/attachments/20190321/8f8fbf70/attachment.png> -------------- next part -------------- A non-text attachment was scrubbed... Name: HF43nl.png Type: image/png Size: 11402 bytes Desc: HF43nl.png URL: <https://stat.ethz.ch/pipermail/r-help/attachments/20190321/8f8fbf70/attachment-0001.png>
dear members, On a closer inspection, I can see that the scatterplot of HF1 and HF5 is of the form y ~ -(1/x), while that of HF1 and HF6 is of the form y ~ (1/x). Is it possible that HF43nl is converging almost due to chance? I mean, for HF53nl, a straight line minimizes the RSS rather than for a curve like y ~ (1/x). Is it possible? If that is the case, should I model it linearly rather than nonlinearly? It is unsettling(this would always gives the wrong prediction given a predictor!). Or rather picewise nonlinear regression(for HF6 < 0 and HF6 > 0)? very many thanks for your time and effort.... yours sincerely, AKSHAY M KULKARNI ________________________________________ From: R-help <r-help-bounces at r-project.org> on behalf of akshay kulkarni <akshay_e4 at hotmail.com> Sent: Thursday, March 21, 2019 5:26 PM To: R help Mailing list Subject: [R] problem with nls.... dear members, I have the following nls call:> HF53nl <- nls(HF1 ~ ((m/HF6) + 1),data = data.frame(HF6,HF1),start = list(m = 0.1)) > overview(HF53nl)------ Formula: HF1 ~ ((m/HF6) + 1) Parameters: Estimate Std. Error t value Pr(>|t|) m 2.147e-07 1.852e-06 0.116 0.908 Residual standard error: 0.03596 on 799 degrees of freedom Number of iterations to convergence: 1 Achieved convergence tolerance: 1.246e-06 ------ Residual sum of squares: 1.03 ------ t-based confidence interval: 2.5% 97.5% 1 -3.420983e-06 3.850292e-06 ------ Correlation matrix: m m 1 The scatter plot of HF6 and HF1 and the corresponding fitted line according to the above output of nls is attached(HF53nl). The fitted line is almost a straight line. But it should be a curve something of: y ~ 1/x. I think the very small value of m is making the curve a straight line. But the fitted curve of the following call makes sense(attached: HF43nl):> HF43nl <- nls(HF1 ~ ((k/HF5) + 1),data = data.frame(HF5,HF1),start = list(k = 0.1)) > overview(HF43nl)------ Formula: HF1 ~ ((k/HF5) + 1) Parameters: Estimate Std. Error t value Pr(>|t|) k -5.367e-04 5.076e-05 -10.57 <2e-16 *** --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 Residual standard error: 0.03368 on 799 degrees of freedom Number of iterations to convergence: 1 Achieved convergence tolerance: 3.076e-07 ------ Residual sum of squares: 0.906 ------ t-based confidence interval: 2.5% 97.5% 1 -0.0006363717 -0.0004370954 ------ Correlation matrix: k k 1 The queer thing is that the RSS for HF53nl and HF43nl is almost the same, which points to the purported validity of HF53nl. How is this possible? Can I go with the above estimates for the coefficient m of HF6 being equal to 2.147 * 10^(-7)? How do I make an nls call so that there is a better fit to HF1 and HF6. NB: If you can't access the attached graphs, how do I send it to you otherwise? I can also give you HF1,HF6,HF5 if needed.... very many thanks for your time and effort.... yours sincerely, AKSHAY M KULKARNI -------------- next part -------------- A non-text attachment was scrubbed... Name: HF53nl.png Type: image/png Size: 11024 bytes Desc: HF53nl.png URL: <https://stat.ethz.ch/pipermail/r-help/attachments/20190321/e0d26bbf/attachment.png> -------------- next part -------------- A non-text attachment was scrubbed... Name: HF43nl.png Type: image/png Size: 11402 bytes Desc: HF43nl.png URL: <https://stat.ethz.ch/pipermail/r-help/attachments/20190321/e0d26bbf/attachment-0001.png> -------------- next part -------------- An embedded and charset-unspecified text was scrubbed... Name: ATT00001.txt URL: <https://stat.ethz.ch/pipermail/r-help/attachments/20190321/e0d26bbf/attachment.txt>
One of the assumptions made by least squares method is that the residuals are independent and normally distributed with same parameters (or, in case of weighted regression, the standard deviation of the residual is known for every point). If this is the case, the parameters that minimize the sum of squared residuals are the maximum likelihood estimation of the true parameter values. The problem is, your data doesn't seem to adhere well to your formula. Have you tried plotting your HF1 - ((m/HF6) + 1) against HF6 (i.e. the residuals themselves)? With large residual values (outliers?), the loss function (i.e. sum of squared residuals) is disturbed and doesn't reflect the values you would expect to get otherwise. Try computing sum((HF1 - ((m/HF6) + 1))^2) for different values of m and see if changing m makes any difference. Try looking up "robust regression" (e.g. minimize sum of absolute residuals instead of squared residuals; a unique solution is not guaranteed, but it's be less disturbed by outliers). -- Best regards, Ivan
dear Ivan, I've not gone into residual analysis; but my observation is simple: I've checked the hist of both HF5 and HF6. There is not much difference. Also I've replaced all outliers. HF1 ~ (m/HF5 )+ 1 is getting fitted properly, but not HF1 ~ (m/HF6) + 1. The following are the actual values:> HF1Time Series: Start = 1 End = 800 Frequency = 1 [1] 1.0319256 0.9842066 1.0098243 1.0446384 0.9177308 1.0060822 0.9609599 1.0374124 1.0139675 0.9973329 0.9559346 0.9848896 [13] 0.9749513 1.0511627 0.9789968 1.0964832 0.9879833 0.9549759 0.9787043 1.0203225 0.9947078 0.9813439 1.0138056 0.9670097 [25] 0.9711946 0.9873085 1.0858024 1.0394149 0.9766102 0.9689002 1.0097453 1.0235376 0.9873976 0.9705998 1.0356838 1.0165155 [37] 0.9855907 1.0757638 1.0072182 1.0280799 0.9281543 0.9587241 1.1086856 1.0446199 1.0158398 0.9529567 1.0610853 0.9976204 [49] 0.9575143 0.9803208 1.1238821 1.0118991 1.0112989 0.9415333 1.0424331 0.9912462 1.0106361 0.9802978 1.0108935 1.0159902 [61] 0.9892313 0.9438749 1.0118004 0.9953912 0.9175923 0.9479009 1.0235502 1.0060517 0.9890903 0.9885812 0.9900430 1.0350717 [73] 1.0108698 1.0468498 1.0656555 1.0436655 0.9908752 0.9751098 1.0163194 0.9851445 0.9710072 0.9885114 1.0109649 1.0490736 [85] 0.9795251 1.0108749 1.0029784 1.0149087 0.9965277 0.9893746 0.9917926 1.0115123 1.0472170 1.0437206 1.0139089 1.0372349 [97] 1.0038352 0.9586151 1.0085806 1.0119048 1.0118624 0.9896469 1.0272961 1.0172400 1.0134005 0.9757968 0.9717420 1.0269058 [109] 1.0114416 0.9512890 1.0181753 1.0565599 1.0376291 0.9865798 1.0212159 1.0701965 1.0324734 0.9899814 0.9973403 1.0172419 [121] 1.0020050 0.9889063 1.0129236 1.0277797 0.9826509 0.9922282 1.0988522 1.0275115 1.0183555 0.9774303 1.0172997 1.0150803 [133] 0.9685015 0.9924186 0.9937192 1.0072210 0.9673327 1.0473338 1.0562761 0.9707440 0.9771936 0.9883559 1.0208805 0.9894798 [145] 1.0694593 0.9754638 1.0383527 1.0013232 0.9863309 0.8778824 1.0157532 1.0438316 1.0000022 0.9740199 1.0305441 1.0275372 [157] 0.9723386 0.9954525 1.0046082 0.9531964 0.9768512 0.9899314 1.0496263 1.0546074 0.9616430 1.0210772 0.9901334 1.0689765 [169] 1.0154938 0.8765444 0.9919604 1.0082690 0.9860675 0.9823378 0.9897682 1.0363582 0.9805102 0.9723787 1.0741545 1.0290322 [181] 0.9760903 0.9850951 1.0500385 0.9774908 0.9861186 0.9898369 0.9941887 1.0097938 1.0187774 1.0591694 1.0270933 1.0466363 [193] 1.0000043 0.9815685 1.0238718 0.9740055 0.9717232 1.0251001 0.9946316 1.0075567 0.9751129 0.9871612 1.0643235 1.0075491 [205] 0.9888058 0.9396797 1.0068366 0.9962325 1.0455487 1.0442334 1.0103938 1.0236919 0.9852552 0.9767037 1.0063593 1.0518584 [217] 0.9705860 0.9718808 1.0178662 1.0414515 0.9883699 0.9860597 1.0394941 1.0103630 0.9082023 0.9889798 0.9646139 1.0052705 [229] 0.9688456 1.0559528 1.0401153 0.9785603 1.0169463 0.9929363 0.9812825 0.9302532 1.0272447 1.0644704 1.0201468 1.0248872 [241] 0.9587034 0.9884793 1.0065787 1.0568458 1.0167972 0.9702934 1.0233577 1.0052691 0.9690838 0.9900543 1.0171212 1.0093782 [253] 0.9518359 0.8953816 1.1180924 1.0126421 0.9847542 0.9731075 0.9906067 1.0191311 0.9757062 0.9819144 1.0392988 1.0358210 [265] 0.9842700 1.0057314 1.0206313 1.0088607 0.9779384 0.9860996 0.9894232 1.0180867 1.0060215 0.9419578 1.0604701 1.0186874 [277] 0.9824626 0.9303484 1.0491317 1.0204767 0.9892820 0.9971268 1.0322837 1.0435960 1.0123649 0.9791956 0.9880841 1.0203823 [289] 0.9696436 0.9769832 1.0704628 1.0230000 0.9665417 0.8624573 1.0152342 1.0538081 0.9885551 0.9605257 1.0196322 1.0135050 [301] 1.0420189 0.9875982 1.0228686 1.0224319 0.9778704 0.9912653 1.0116106 1.0226598 0.9387455 0.9717815 1.0122788 0.9889690 [313] 1.0232488 1.0276606 1.0173681 1.0159885 0.9877074 0.9838069 1.0374707 1.0152624 0.9789677 0.9612178 1.0192874 1.0644549 [325] 0.9715407 0.9787567 0.9925342 0.9790322 0.9777879 0.9680505 1.0224064 1.0348370 0.9875051 0.9457753 0.9914921 0.9591109 [337] 0.9629202 0.9995519 1.0136481 1.0221348 1.0148608 0.9912785 1.0439862 1.0330749 0.9762325 0.9983923 0.9348918 1.0227065 [349] 0.9794121 0.9733227 1.0082373 1.0421889 0.9767361 0.9726911 1.0100370 0.9921361 0.9861159 0.9749961 1.0594331 1.0806732 [361] 1.0276992 1.0329190 1.0686383 1.0466639 0.9740776 0.9672371 1.0128714 0.9934691 0.9582222 0.9332858 1.0029784 1.0250300 [373] 1.0059249 0.9999445 1.0082015 1.0252359 0.9760324 0.9493543 0.9996351 1.0116540 0.9675301 0.9470141 1.0127507 1.0112527 [385] 0.9766712 0.9703953 1.0592567 1.0360448 0.9790881 0.9680051 0.9711350 1.0049626 0.9738689 0.9819661 1.0835125 0.9765333 [397] 0.9138484 1.0220322 1.0465788 1.0065803 1.0273082 0.9838126 1.0151329 1.0146824 0.9452442 0.9489901 0.9921946 1.0101152 [409] 0.9730738 0.9354592 0.9542558 0.9681532 0.9792620 1.0352246 1.0426173 1.0180344 0.9576323 0.9533448 0.9846387 1.0261479 [421] 0.9453757 0.9455791 1.0691109 1.0084141 0.9844405 0.9537970 1.0118840 1.0094733 1.1493009 0.9922558 0.9941628 1.0290179 [433] 1.0020050 0.9971342 1.0436267 1.0726863 1.0925811 1.1072580 1.0390200 1.0376942 1.0302470 0.9838505 1.0420336 0.9793092 [445] 0.9850191 1.0196805 1.0065491 1.0158645 1.0117730 0.9406381 1.0097070 0.9870108 0.9818856 1.0040046 0.9712323 0.9951345 [457] 1.0199816 1.0551752 1.0112867 1.0763534 1.0253155 1.0029784 1.0251464 1.0814414 0.9987183 0.9771628 0.9726044 1.0482059 [469] 1.0020050 0.8931139 1.0367775 1.0260033 0.9728766 1.0225689 0.9908196 1.0068729 0.9912127 0.9931128 1.0158280 1.0433496 [481] 1.0203120 1.0085496 0.9812741 1.0615742 1.0119223 0.9849236 0.9992032 0.9879929 0.9000571 0.9891419 1.0345521 1.0381184 [493] 0.9886766 0.9574869 1.0149106 1.0294410 0.9882982 1.0244778 0.9812230 1.0082813 0.9664091 1.0283733 1.0124268 0.9992115 [505] 0.9872004 0.9884649 1.0386713 0.9763343 0.9597727 0.9567414 1.0086152 1.0165768 0.9848861 0.9620526 1.0123326 1.0447678 [517] 0.9934084 0.9669690 1.0360421 0.9829837 0.9761610 0.9708850 1.0014170 1.0195497 0.9806560 0.9757284 1.0251931 1.0116233 [529] 0.9868054 0.9756085 1.0303624 1.0077517 1.0505017 0.9414114 1.0124536 1.0131595 0.9638660 0.9887363 1.0132553 1.0052792 [541] 0.9820370 0.9460134 1.0125483 1.0426700 0.9818528 0.9762532 0.9582658 0.9814603 0.9618717 0.9615659 0.9496436 0.9877108 [553] 0.9999971 1.0284677 1.0106125 1.0031898 0.9793703 0.9486161 1.0226473 1.0236002 0.9538295 0.9689285 1.0313897 1.0212912 [565] 0.9505638 0.9921170 1.0130086 1.0419494 1.0000323 0.9607922 1.0211809 1.0424671 0.9795343 0.9497697 1.0231071 1.0142700 [577] 0.9765539 0.9492815 1.0267628 1.0135138 0.9885966 0.9529603 1.0264062 1.0249176 0.9872525 0.9849608 0.9986306 1.0437033 [589] 1.0041780 0.9931204 1.0329029 0.9939742 0.9459785 0.9629758 0.9456565 0.9836949 0.9754926 0.9976241 1.0232742 1.0050830 [601] 0.9481952 0.9854969 1.0352188 1.0337062 0.9892019 0.9554122 1.0189333 0.9793607 0.9899167 0.9503345 1.0117583 1.0371750 [613] 1.0070349 0.9804208 1.0500940 1.0107281 1.0698735 0.9881469 1.0565684 1.0179031 0.9856278 1.0314952 1.0720689 1.0011222 [625] 0.9743944 1.0034468 0.9824861 1.0192735 0.9991494 0.9842630 1.0060971 1.0294506 0.9695057 0.9725408 1.0227924 1.0088150 [637] 0.9765886 0.9889828 1.0108903 1.0068109 0.9905286 0.9517037 1.0527706 1.0257783 0.9932039 1.0121870 1.0506565 0.9816386 [649] 0.9843450 0.9552800 1.0124886 1.0332463 1.0021401 0.9885442 1.0136001 1.0381933 0.9594773 1.0679251 0.9653448 0.9997715 [661] 0.9890589 0.9658054 1.0079124 1.1292276 0.9873225 0.9730770 1.0699042 1.0174021 1.0041981 1.0232245 1.0389181 0.9720513 [673] 0.8686271 0.9915428 0.9606290 1.0482094 0.9898013 0.9510998 0.9602020 0.9976802 1.1427011 0.9917742 0.9770992 0.8638270 [685] 0.9991782 1.0455336 1.1043633 1.0489159 1.0029784 0.9906192 1.0307161 1.0182152 0.9677313 1.0090984 0.9851279 0.9596324 [697] 0.9743092 0.9748568 1.0206321 1.0517142 0.9876535 0.9732838 1.0656093 1.0603864 0.9980164 0.9795437 0.9746766 0.9784871 [709] 0.9746066 1.0484975 1.0228157 1.0165735 0.9785301 1.0322862 1.0303562 1.0203352 0.9606113 1.0674109 1.0051598 1.0095761 [721] 1.0138837 0.9862772 1.0173451 0.9879873 0.9761662 0.9828150 0.9839169 0.9887962 0.9474475 0.9786754 1.0405266 1.0246702 [733] 0.9764242 0.9782060 1.0004626 1.0653315 1.1480925 0.9567859 1.0410088 1.0246378 1.0025964 0.9894414 1.0146759 1.0449204 [745] 0.9917509 0.9706269 1.0199806 1.0044524 0.9942750 1.0145927 0.9917488 1.0314604 0.9495737 1.0005564 0.9972033 0.9849848 [757] 0.9741118 0.9693319 1.0061280 0.9892915 0.9944768 1.0101943 1.0545997 1.0044063 1.0020050 1.0127975 1.0164313 1.0285558 [769] 1.0043574 0.9854983 1.0122655 1.0123857 0.9879603 0.9734764 0.9995228 1.0315182 0.9564373 1.0543879 1.0099970 0.9987432 [781] 0.9580883 0.9724853 1.0167722 1.0102822 0.9629902 0.9908875 0.9838395 0.9733901 1.0207349 0.9848377 1.0633785 1.0312998 [793] 1.0316422 1.0335433 0.9890110 1.0334082 0.9915590 0.9909167 1.0208474 0.9899497> HF6Time Series: Start = 1 End = 800 Frequency = 1 [1] 9.703261e-02 -3.302060e-01 5.100922e+00 1.932550e+00 -1.386912e-01 1.482268e-02 -1.137384e+00 3.732522e-01 2.506729e-01 [10] -2.919045e-01 -6.675508e-02 -1.267444e+00 -4.271286e-01 1.539651e-01 -1.424168e-01 2.632788e-01 -6.013491e-02 -5.743224e-02 [19] -1.955379e-01 7.423308e-01 -3.041726e-03 -2.667225e-02 2.409421e-01 -4.339732e-02 -2.372542e-01 -2.194143e-01 2.712374e-01 [28] 1.764577e+00 -1.583502e-01 -1.558412e-01 4.859185e+00 6.595212e-02 -6.227563e-02 -3.663468e-02 9.338089e-01 1.165410e+00 [37] -3.776054e-02 1.015936e+01 4.269841e+00 8.659153e-01 -1.045996e+00 -8.061952e-01 2.627137e-01 1.023131e-01 2.757644e-01 [46] -6.199723e-02 1.466399e-01 -3.353696e-01 -2.881873e-01 -1.560865e-01 2.946743e-01 1.825263e-01 6.075510e-01 -7.659018e-02 [55] 9.332004e-02 -7.924914e-01 -2.995696e+00 -2.625424e-01 6.959834e+00 2.882190e-01 -5.555718e-02 -3.191530e+00 -2.894247e+00 [64] -7.495410e-01 -5.698178e-01 -2.920025e-01 7.262345e-02 6.955618e-01 -7.509777e-01 -3.111461e-02 -1.757717e+00 9.583333e-02 [73] 2.022944e-01 1.481875e-01 3.709509e-01 3.297667e+00 -1.679928e-02 -6.633111e-01 3.081464e-01 -1.522342e-01 -2.697393e-01 [82] -2.474069e-01 1.267182e+00 2.990766e-01 -1.483910e-01 1.851073e-02 -3.320246e+00 5.365467e-01 3.685251e-02 -5.869044e-02 [91] -5.304953e-01 8.510204e-02 -1.943394e+00 6.796528e-01 8.707915e+00 5.339946e-01 3.334323e-01 -5.567989e-01 1.741750e-01 [100] 3.974109e-01 -1.180250e-01 -3.248193e-01 2.839601e-01 8.396776e-01 1.587400e+00 -1.052848e-01 -5.427561e-02 1.308345e+00 [109] -4.321102e+00 -2.114642e+00 2.545551e-01 2.608206e-01 2.468002e-01 -3.503397e-01 8.657229e-02 4.993098e-01 2.432785e+00 [118] -1.896142e-02 -2.014234e+00 2.029458e+00 6.079714e+00 -2.764164e-01 2.669853e-01 3.423891e+00 -5.324067e-01 -1.615363e-02 [127] 2.728479e+00 2.063365e+00 3.873700e-01 -9.717373e-01 2.802471e-01 3.221953e+00 -1.380415e+00 -2.251014e-01 -9.367013e-01 [136] 1.453974e-01 -9.212878e-01 6.660146e-01 2.698844e-01 -2.378487e-01 -1.841615e-01 -7.505472e-01 2.545551e-01 -1.904946e-02 [145] 2.825536e-01 -1.849939e-01 3.591260e-01 3.743418e-01 -2.778478e+00 -1.329060e+00 3.160122e-01 4.643313e-01 5.750524e-05 [154] -6.072878e-01 2.644429e-01 1.874244e+00 -2.695451e-01 -9.715273e-03 3.494761e-01 -9.281908e-02 -1.818026e-01 -3.065760e+00 [163] 1.745485e-01 4.058502e-01 -7.937648e-02 4.082885e-01 -5.328007e-02 5.173842e-01 3.014029e-01 -1.332769e+00 -1.525841e+00 [172] 1.278083e+00 -2.592115e+00 -5.447981e-02 -5.511966e-02 1.499697e-01 -7.537936e-01 -6.736513e-01 2.502264e-01 1.421474e+00 [181] -1.908278e-01 -2.629398e+00 3.030101e-01 -5.162059e-01 -2.154668e-01 1.774540e-03 -8.088480e-01 5.501430e-01 5.268684e-02 [190] 2.180616e-01 5.120812e-01 2.823400e-01 1.174173e-04 -3.871419e-02 3.158028e+00 -1.044852e+00 -2.686278e-01 7.454716e-01 [199] 7.658868e+00 1.125989e+00 -1.923856e-01 -2.441550e+00 5.024290e-01 2.290590e+00 -5.988608e-02 -7.947542e-01 4.383090e-01 [208] -6.176262e-03 2.480572e-01 6.266179e-01 3.552698e+00 7.503722e-01 -2.675535e-02 -5.389840e-01 8.622592e-01 1.991035e-01 [217] -2.189162e-01 -1.161234e+00 6.972145e-01 2.780796e-01 -6.312992e-02 -2.608414e+00 2.618422e+00 5.462640e+00 -1.142624e+00 [226] -8.490826e-01 -1.288512e-01 4.011994e-02 -2.048321e-01 3.272460e+00 6.866489e-01 -5.466328e-02 3.070392e-01 -9.886495e-01 [235] -1.569525e+00 -1.306696e-01 3.623149e+00 1.978161e-01 2.545551e-01 2.002372e+00 -5.400229e-01 -1.656640e-02 1.206290e-01 [244] 2.054049e-01 3.155210e-01 -1.744452e-01 2.545551e-01 7.412855e-01 -1.234508e-01 -1.718832e-02 7.214410e-01 6.076084e-01 [253] -1.024878e+01 -1.287062e+00 3.080408e+00 5.876054e-01 -2.777261e-01 -1.009898e+00 -5.856174e-01 6.067372e-02 -8.840570e-02 [262] -3.594392e-01 1.813739e+00 1.405564e-01 -3.372484e-02 8.371325e-01 3.424895e-01 1.493120e+00 -1.433819e+00 -4.222862e-01 [271] -6.719543e-02 3.063784e+00 1.282949e-01 -1.294272e-01 3.830982e-01 2.144883e+00 -8.491788e-02 -2.231544e+00 3.286810e-01 [280] 7.426660e-01 -6.825884e-02 -3.435546e-02 1.707858e+00 2.714363e-01 2.583534e-01 -1.856543e-01 -2.983154e-02 1.084806e+00 [289] -2.070454e+00 -1.513304e-01 2.514891e-01 1.531216e+00 -1.656472e+00 -1.337082e+00 3.243848e-01 1.715378e-01 -7.437379e-02 [298] -6.363805e-01 8.216420e-01 2.398677e+00 2.481079e-01 -1.493501e+00 1.788803e+00 4.053156e-01 -1.932145e-01 -1.698920e-01 [307] 3.829476e+00 1.608798e+00 -1.129716e-01 -1.141733e+00 1.621158e+00 -3.343241e-02 4.700237e+00 2.001713e+00 4.618576e+00 [316] 2.501457e+00 -7.836369e-02 -1.908722e-01 1.028320e+01 5.647405e-02 -1.710083e-01 -1.065351e+00 4.019061e-01 2.086564e-01 [325] -3.025440e-01 -9.047322e-02 -6.460067e-01 -6.844164e-01 -1.881830e-01 -8.318599e-02 3.826786e+00 9.766119e-01 -7.635718e-02 [334] -2.220902e-01 -3.856785e+00 -1.094635e+00 -7.540428e-02 3.058904e-02 9.137646e-01 3.775832e+00 2.989209e-01 -1.054544e-01 [343] 1.553016e-01 2.089815e+00 -1.232086e+00 -6.334727e-03 -7.148192e-01 1.619745e+00 -1.637780e-01 -2.134504e-01 1.515387e-01 [352] 2.434295e-01 -1.831071e-01 -9.457498e-01 2.459490e+00 -4.414135e-02 -8.114919e-02 -4.016494e-01 3.734457e-01 4.896307e-01 [361] 4.049245e+00 2.017318e+00 2.488363e-01 2.780003e-01 -1.550511e+00 -3.131615e+00 3.587101e+00 -8.323622e-02 -9.310946e-01 [370] -1.594693e-01 -6.449885e+00 8.850238e-01 2.298414e-01 2.548747e-02 3.259190e-01 3.200593e+00 -4.624236e-02 -3.353935e+00 [379] -9.192395e-03 1.659781e+00 -3.100714e-01 -2.432555e+00 2.493722e+00 6.676577e+00 -1.780416e-01 -8.183622e-01 2.873045e-01 [388] 1.873401e+00 -3.159656e-01 -1.063461e+00 -2.275333e-01 2.545551e-01 -1.147574e-01 -2.423924e-01 5.087483e-01 -4.946087e+00 [397] -1.404096e+00 5.942892e-01 1.850712e-01 2.305337e+00 1.519311e+00 -1.659701e-01 1.099995e+00 8.581784e-01 -1.180922e+00 [406] -1.422570e-01 -1.017652e-01 6.907890e-01 -2.043544e-01 -1.268577e-01 -7.520662e-01 -3.144183e-01 -3.326276e-01 2.571825e+00 [415] 2.758053e-01 5.519530e-01 -4.779812e+00 -8.598340e-01 -2.733269e-01 1.746146e+00 -1.152102e-01 -1.696746e-01 8.731155e+00 [424] 4.202525e-01 -8.863015e-02 -1.811685e+00 1.030848e+00 6.446866e+00 4.923567e+00 -2.394358e-02 -1.384412e-01 1.970634e-01 [433] 5.853398e+00 -5.313277e-01 2.451911e-01 5.068814e-01 1.001283e+01 2.545551e-01 2.991683e-01 2.978852e-01 1.920352e+00 [442] -6.436663e-01 2.865144e-01 -2.985307e+00 -7.993755e-02 6.913159e+00 1.263291e-01 4.946523e-01 2.384704e-01 -2.053579e-01 [451] 1.041425e+00 -3.840293e-02 -2.728177e-01 1.088364e-01 -2.959904e+00 -3.448277e-01 5.773138e-01 8.970300e-01 4.063197e-01 [460] 5.289729e-01 9.353198e-02 -5.891475e+00 2.352159e-01 1.773673e+00 -3.609789e-02 -5.292783e-02 -3.005821e+00 5.409213e-01 [469] 5.832009e+00 -1.372102e+00 3.681388e-01 2.022951e-01 -1.088937e+00 1.301919e+00 -1.351298e-01 1.666197e+00 -4.925816e-01 [478] -2.756112e-01 4.107335e-01 2.707616e-01 2.778384e-01 2.869210e-01 -2.518847e+00 2.731433e-01 3.057766e-01 -6.508426e-02 [487] -6.508053e-02 -5.386767e-02 -1.319746e+00 -5.511262e-01 2.439812e-01 3.581400e-01 -1.816593e-02 -2.177485e+00 1.568457e+00 [496] 2.416807e+00 -6.700124e-01 1.588973e-01 -8.862605e-02 2.121985e-01 -1.143138e+00 1.076068e+00 3.220819e-01 -6.488642e-02 [505] -9.119583e-02 -1.900989e-01 3.154147e-01 -5.464995e-01 -2.187182e-01 -2.180317e+00 2.234639e-01 2.134121e+00 -9.894065e-01 [514] -6.472309e-01 3.239172e-01 2.761212e-01 -1.826730e-01 -1.782663e-01 3.954665e-01 -1.855077e+00 -2.951616e-01 -1.235170e-01 [523] 2.251821e-01 5.553531e-01 -2.023192e-01 -9.014496e-01 6.563737e-01 4.016597e-01 -9.749756e-02 -6.402956e-02 2.750496e-01 [532] 2.754876e-01 3.293551e-01 -5.005642e+00 3.231129e-01 2.545811e-01 -1.022154e+00 -8.060808e-01 3.521192e-01 2.119989e-01 [541] -2.381150e-01 -3.288550e+00 1.421280e+00 2.847853e-01 -2.001002e-01 -1.646902e-01 -1.850079e-01 -7.654026e-02 -1.188583e-01 [550] -1.742599e-01 -1.984759e+00 -8.682619e-02 2.071753e-02 1.087379e+00 2.844600e-01 7.515339e-01 -2.224236e-01 -3.075256e+00 [559] 8.950929e-02 2.394501e+00 -2.165059e+00 -1.233829e-01 2.701741e+00 2.282062e+00 -1.924431e+00 -2.082254e-01 3.412529e-01 [568] 2.607147e-01 1.124918e-03 -1.203852e-01 2.657898e+00 1.957524e-01 -2.931182e-01 -1.971033e+00 1.807135e+00 8.706652e-01 [577] -2.326451e-01 -8.473731e-01 6.189609e-01 5.287915e-01 -7.740822e-01 -1.821481e+00 1.237988e-01 2.233247e+00 -3.362100e-01 [586] -2.170038e-01 -2.635905e-02 2.472973e-01 3.868325e-02 -1.159021e-01 2.500380e-01 -6.085198e-01 -1.899817e-01 -1.431927e-01 [595] -3.052454e+00 -3.469223e-01 -2.444967e-01 1.652156e-02 2.119758e-01 4.240047e-01 -1.911114e+00 -9.038186e-02 2.528617e-01 [604] 2.756286e+00 -3.906295e-01 -1.484883e-01 6.719161e-01 -3.866083e-01 -6.435435e-02 -1.902576e+00 5.826201e-01 2.644784e-01 [613] 9.538629e-02 -2.011244e-01 2.984296e-01 2.771165e+00 8.282686e+00 -1.932610e+00 4.163817e-01 1.595534e-01 -1.118635e+00 [622] 2.470832e-01 5.270764e-01 3.958194e-01 -6.165985e-02 5.335154e-01 -3.571421e-01 2.505762e+00 -2.753137e-02 -5.469856e-01 [631] 9.252352e-01 6.461865e-01 -4.461937e-01 -7.364934e-01 2.285105e+00 7.138954e-01 -2.720298e-01 -8.693912e-01 2.993691e+00 [640] 8.028559e-01 -6.743009e-02 -5.307888e-01 3.119620e-01 3.434619e+00 -1.452196e+00 1.684125e+00 3.311307e-01 -5.669708e-01 [649] -3.553324e-01 -1.896185e+00 3.446842e+00 7.830310e-01 -1.711669e+00 -1.277983e+00 4.621170e-01 2.421051e-01 -1.701033e-01 [658] 8.163954e-01 -7.261633e-01 -1.299687e-02 -8.016282e-02 -1.140658e-01 1.323860e+00 2.545551e-01 -2.675428e-01 -8.433672e-01 [667] 5.228999e-01 1.632592e-01 -2.957998e-01 -5.553013e-01 3.011379e-01 -6.305225e-01 -8.612630e+00 -3.065235e-01 -8.305565e-01 [676] 3.059103e-01 -7.797204e-02 -1.786650e+00 -1.488405e-01 -5.183906e-02 5.218233e+00 1.728557e-01 -4.481405e-01 -5.693220e+00 [685] 2.999499e-01 3.040171e-01 7.464381e+00 6.972166e+00 -8.403415e+00 -6.402848e-02 6.964933e-01 4.432842e-01 -1.786165e-01 [694] 5.528044e-01 -3.616451e-01 -1.591170e-01 -5.733156e-01 -3.732071e-01 1.612954e+00 4.521562e-01 -2.379350e-01 -7.817489e-01 [703] 5.615589e-01 7.984968e+00 -1.419967e-03 -3.413697e-01 -5.719286e-01 -8.776290e-02 -3.640012e-01 3.454289e-01 1.116740e-01 [712] 1.435803e-01 -2.474860e-01 1.093524e+00 2.347177e-01 1.730654e-01 -1.228630e-01 5.803183e-01 1.384456e+00 5.756865e-01 [721] 4.993324e-01 -3.569028e-01 1.399057e+00 -1.404911e+00 -2.982227e-01 -1.440777e-01 -3.008329e-01 -1.480333e-01 -2.034551e-01 [730] -6.386024e-02 5.534418e+00 1.260242e+00 -8.166069e-01 -2.222623e-01 7.545084e-02 5.541968e-01 5.556761e+00 -8.453119e-01 [739] 3.526444e-01 2.922084e+00 2.172985e-01 -1.469902e+00 1.632111e-01 3.493874e-01 -1.966893e-01 -2.924236e-01 1.102409e-01 [748] 6.462530e-02 -1.704171e-02 4.125223e-01 -2.080039e-01 2.607025e-01 -2.169992e-01 8.481024e-02 1.636632e-01 -5.962679e-01 [757] -3.093319e-01 -1.073459e-01 1.363464e+00 -1.401023e+00 -2.107503e-02 5.597599e-01 5.385795e-01 1.863389e+00 6.397418e+00 [766] 1.861240e+00 1.194237e+00 2.997435e-01 1.611484e-01 -5.484613e-01 1.189842e+00 3.837644e+00 -2.338096e-01 -5.737762e-01 [775] 2.413753e-03 3.455508e+00 -6.577547e-01 3.693522e-01 1.219843e-01 -2.947803e-02 -2.569075e-01 -1.664628e-01 2.123460e+00 [784] 4.798212e+00 -1.675385e-01 -7.847523e-02 -3.216411e-01 -2.386470e-01 2.017492e+00 -2.721515e-01 2.467115e+00 5.415200e-01 [793] 1.157133e+00 4.056428e-01 -2.823108e-01 4.366070e-01 -9.937483e-01 -6.383019e-02 2.599436e-01 -2.154435e-01> HF5Time Series: Start = 1 End = 800 Frequency = 1 [1] -0.053649858 0.473045129 -1.855791134 -0.218807875 0.014571536 0.159596481 0.081564240 0.155658287 -0.106533556 [10] 1.349296039 0.043722595 1.184981768 2.936701948 -0.020890782 0.287209659 -0.343506862 0.182125744 0.321655319 [19] 0.152265596 -0.130765767 0.301479728 0.237639510 -0.113640154 0.116768441 0.245115225 2.653399743 -0.014934997 [28] -0.376484031 0.098036596 0.078589972 -10.566796506 -0.033271764 0.007003626 0.336061740 -0.290931130 -1.003161849 [37] 2.126410832 -0.339519118 -1.984023750 -0.188090224 8.562631062 1.515090731 -0.089723677 -0.035854499 -0.156259607 [46] 0.087586561 -0.099550560 -0.386082232 1.231825926 0.665419202 -0.018845938 -0.273064427 -0.441205599 0.058367119 [55] -0.035881404 0.231425905 -1.731548372 0.511813720 -2.652292762 -0.163362295 0.112082704 2.127449901 -1.984516819 [64] -1.681618131 -0.291551146 1.301356201 -0.231139629 -1.761747111 2.198414002 0.031431206 4.817803230 -0.053835827 [73] -0.241400896 -0.132737682 -0.494221853 -3.427015165 0.158200929 6.618433733 -0.255699644 0.399170676 0.469394277 [82] 1.403215236 -0.539113590 -0.074840353 0.315268293 0.017757466 -0.069162940 -0.591611166 0.952482170 0.040122193 [91] -0.224477562 -0.035925567 -0.213900914 -2.517367299 -6.371690768 -0.379127361 1.742901426 0.115588677 -0.070774432 [100] -0.042019349 -0.203094162 6.187633937 -0.030255588 -14.135776862 -0.292919023 0.210526422 0.015809975 -0.191603291 [109] -0.028013930 1.196397848 -3.136609657 -0.016623343 -0.047866621 0.235623521 -0.033250628 -0.029950585 -0.152733306 [118] 0.283585876 0.725438532 -5.321553815 -0.262818166 0.333358093 -0.127887678 -0.825616353 0.729752381 0.161256587 [127] -0.127870499 -3.504392573 -0.056818942 1.051455503 -0.610581967 -1.772628876 7.763088022 6.377255877 0.982331777 [136] -0.049720167 1.668057546 -0.081526679 -0.016646304 0.027828635 0.021019397 0.638606658 -2.639610493 0.252214128 [145] -0.021177179 0.309961739 -0.159709264 -0.791889902 0.221659320 0.071520603 -0.191792830 -0.095849781 0.147118019 [154] 0.423879172 -0.015966532 -0.814997357 0.182181232 0.740886403 -0.425878632 0.063399111 0.084086002 6.242629054 [163] -0.166059640 -0.164944798 0.047540050 0.077867048 0.210206725 -0.059959501 -0.134972375 0.724032252 1.208053371 [172] -1.450416248 0.767002941 0.567248602 0.203201419 -0.017947959 0.723492119 2.315582396 -0.003250712 -0.214061467 [181] 0.140103172 1.485875229 -0.063942314 0.504794752 1.203681332 2.916254637 -0.599141209 -0.504639390 -0.035917702 [190] -0.066508032 -0.774334925 -0.044962400 0.539379226 0.035552430 -0.852486162 0.582649427 0.511438446 -0.054846737 [199] -1.363899566 -0.925264908 0.378290631 8.418752812 -0.329694296 -0.646217899 0.014012816 0.229314359 -0.822570550 [208] 0.035566960 -0.048042626 -0.230902834 -0.983361624 -0.524604472 0.142112334 3.178630141 -0.679181149 -0.021673949 [217] 0.455549743 2.884246546 0.995534936 -0.074915836 0.294327209 8.707540120 -0.891039780 -5.116943345 1.807300268 [226] 4.653522444 0.176254186 0.096643906 0.097676112 -0.442654494 -0.176779103 0.047338893 -0.206053506 24.897248697 [235] -0.558294814 0.015836695 -0.754272940 -0.071928292 -4.065491270 -1.044690836 0.376283222 0.588343352 -0.355257156 [244] -0.083364082 -0.007105364 0.529359954 -8.021221450 -0.546179595 0.646916952 0.178089665 -0.051864657 0.253082405 [253] 20.713299311 0.759143878 -0.539982015 -0.368425364 3.538669564 0.567510757 0.191253562 -0.053957999 0.047407002 [262] 1.072823567 -2.268748418 -0.033168432 0.252976417 4.010509758 -0.085581899 -1.500184616 2.623411867 0.129878721 [271] 0.196248634 -0.481771250 -0.056828978 0.031878859 -0.144508992 -1.702092094 0.450120295 2.201565243 -0.208548110 [280] -0.607892432 0.210270224 -0.053396495 -1.098250818 -0.497645770 -0.019981605 0.026436961 0.269281987 -0.203943129 [289] 5.803557957 0.898143581 -0.016638145 -2.870511105 12.535882950 0.089523798 -0.071056442 -0.083304296 0.371506360 [298] 2.549915204 -1.388314210 -5.815539352 -0.210410307 -0.046665442 -1.398770615 -0.420604388 0.007011299 7.295412551 [307] -3.567433713 -2.259342153 0.111306625 9.424201044 -0.099990007 0.058851186 -0.319394368 -1.188994369 -13.473532466 [316] -4.123907909 0.007008249 0.026816923 -11.866142680 -0.017989270 0.277994379 3.218420951 -0.312668928 -0.149944044 [325] 0.056081944 0.507135605 0.016331503 1.002122867 0.715103715 0.127326780 -5.870328468 -0.530081308 0.336482105 [334] 0.162019469 0.136228079 0.109176188 0.265903072 1.954660692 -1.262932946 0.190943304 -0.114749082 3.999535346 [343] -0.022649183 -2.320142948 4.864378799 0.107269719 -0.147020500 -0.880102075 0.896221148 0.383806031 -0.014315332 [352] -0.064334680 0.126186237 1.836083215 -1.195093675 0.247399700 0.210305271 1.205910512 -0.128797914 -0.015077554 [361] -0.076260331 -1.984423551 -0.050001641 -0.060265425 2.076702500 -1.560055417 -13.194087713 -0.433552321 0.259611369 [370] 0.015964183 0.105154985 -0.359399469 0.056095783 0.468687701 0.237191558 -0.180564873 0.071450142 1.633298516 [379] 0.098140453 -0.865187577 0.126199486 3.933684419 -2.439808356 -5.299750403 0.659122872 5.485314982 -0.060356968 [388] -0.273469732 0.881925411 1.401311316 0.357596451 0.190943304 0.225427150 1.918599734 -0.135809594 -1.539832826 [397] 1.422332786 -0.216520004 -0.116653447 -0.945873057 -1.076258982 0.530886207 -14.858856834 -10.332358918 3.337007186 [406] 0.029548722 -0.177707477 -0.465327158 0.126175184 0.079632842 1.568379101 0.039669024 3.115629690 -0.035586517 [415] -0.195985895 -0.577867640 -0.677797610 1.094892700 -0.376687825 -4.102964091 0.143566503 0.088692628 -1.453786558 [424] -0.299393058 1.107887381 0.674420993 -2.646522732 -1.389318035 -0.211813487 0.390659815 -0.355424658 -0.228305953 [433] -0.390932354 0.797608035 -0.400864878 -0.664606830 -2.128206234 -1.332743740 -0.048330806 -0.302019469 -1.364677631 [442] 0.850007608 -0.498655463 -1.120737861 0.044377074 -4.067918353 -0.177685144 -0.238197352 -0.099527123 0.063876860 [451] -0.109607175 0.286745627 3.228227858 1.155269654 -1.714722099 2.044204651 -0.376951275 -0.256646314 -0.462593438 [460] -0.150378251 -0.036127900 -0.168221859 -0.250161833 -0.132990944 -0.092393191 0.017930849 -0.821142000 -0.045328381 [469] -0.156346755 0.251034593 -0.015115175 -0.049923585 9.808254454 -10.923406279 0.218855389 -3.481913209 2.269242277 [478] 1.618053635 -0.568450760 -0.100185900 -0.218372487 -0.533170368 -3.035492341 -0.018080448 -0.270147632 0.064100947 [487] -1.656390523 0.044406230 0.403815427 4.463785965 -0.242225219 -0.060562600 0.111633931 1.952214234 -1.702724573 [496] -2.321447242 7.091924992 -0.100624956 0.014795836 -0.127924982 2.603975673 -0.238145700 -0.206169571 -0.280573145 [505] 0.133267731 1.334596328 -0.080741903 1.136959798 0.103590046 0.382617191 -0.120816198 -10.255711630 4.959744726 [514] 0.203784749 -0.241718413 -0.418653153 7.263519760 0.175385478 -0.121027999 -0.921554800 0.014025795 0.812840365 [523] -0.033736823 -0.881201126 0.014024605 1.413383175 -0.084845152 -1.501412214 0.014026681 0.351134701 -0.105825219 [532] -0.190871159 -0.016198856 1.582199545 -0.355298930 -0.119154942 1.119952829 15.442702714 -0.526105476 0.254349129 [541] 0.182400471 0.290090107 -0.544720386 -0.704947881 0.182413507 0.415254298 0.478675043 0.337429554 0.015951895 [550] 0.579123775 0.276916517 0.336730820 0.166459998 -0.165019677 -0.170639297 -2.156172309 0.007015360 0.679413452 [559] -0.180776170 -0.412514852 1.919485711 0.564221261 -1.814078186 -0.523469370 0.850946856 0.654857991 -0.433715765 [568] -0.064963825 0.315600383 0.208368575 -1.362624306 -0.036163560 1.522171004 0.501262098 -2.957851936 0.041325375 [577] 0.792613097 0.461937482 -0.549182039 -0.201497868 0.559521219 2.330550367 -0.072344287 -0.696108042 0.255478720 [586] 1.414073413 -0.568775940 -0.324689599 0.489813834 -0.149345898 -0.083926323 12.669192340 0.395227403 0.575646109 [595] 0.969961408 0.139445941 0.028068230 0.961621369 -0.747248768 -1.600810860 1.075547238 0.420965386 -0.113631655 [604] -0.903460198 0.524895605 0.044527148 -0.461720956 -0.547639601 0.084186467 1.174865283 -1.097194604 -0.032498414 [613] 2.392118505 0.986643396 -0.162424173 -3.164451200 -0.769422900 -0.184600192 -0.197917436 -0.352329082 1.290558257 [622] -0.184791050 -0.076097183 -1.798061452 0.080099125 2.062484105 -0.348501142 -2.106705631 0.007017747 2.305538391 [631] -0.915838960 -0.220861746 0.077200047 0.610466280 -0.688401758 -0.207153770 0.049139553 22.362186197 -5.441551857 [640] -1.708605711 0.926299855 0.207035751 -0.106446657 -2.675294607 -0.404511023 -0.788943233 -0.048807464 -0.227614326 [649] -0.085333035 0.977385829 -16.826537503 -0.200423157 -0.051340705 6.499090143 -0.304213082 -0.065082852 0.048070630 [658] 0.666539778 -0.064016381 -0.109602571 0.533325153 0.528565621 -0.248317213 -3.473373955 1.272400022 1.711836935 [667] -0.228344960 -0.252753461 -0.488373752 -0.401594723 -0.030427542 -0.455079097 3.252051577 0.960391227 -0.256075733 [676] -0.136915862 0.098237444 1.674612416 0.044609980 -0.248469202 -0.298662830 1.173803660 -0.208363252 1.850645023 [685] 1.036270876 -0.152137097 -0.048105658 -1.277109207 0.059431246 0.064698690 -0.246801765 -0.196775000 0.533961473 [694] 0.220699810 -0.312873635 0.014867680 -0.241851486 0.032156787 -1.816522484 -0.167733410 4.158794025 2.099466739 [703] -0.030488507 0.112566051 0.075675048 0.302820106 -0.469476310 0.210115120 0.056139143 -0.030484607 -0.072570524 [712] -0.033886465 0.091219120 -0.248023454 -0.081455556 -0.203068185 0.054095543 -0.015255905 -3.701371648 -0.623879061 [721] 0.853410776 6.103753013 -1.341198580 1.247921308 0.751060465 0.781642884 0.379135477 1.145320110 0.313305428 [730] 0.112618403 -1.412256823 -0.103142715 -0.007113346 0.659901598 -2.519498558 -0.365995410 -0.184937991 0.897416670 [739] -0.518805259 -3.353209940 1.867572217 9.205127781 -0.187969046 -0.778383177 -0.042669664 0.806807477 -0.090799820 [748] -0.021826161 0.448223805 -0.164371146 -0.618774302 -0.244839681 0.194235170 1.570125546 1.754972837 0.500679719 [757] 0.870366653 0.433784961 -1.002863246 2.101960944 0.697030522 7.950881827 -0.061270167 -2.371332122 -0.142291873 [766] -1.729969712 -1.941166110 -0.245036824 -0.106730528 5.057757700 -1.038846526 -0.858866602 3.386084663 1.395573786 [775] -0.291650577 -2.212035645 0.856991031 -1.532383568 -0.185747818 -0.711396025 1.062315644 0.241829929 -1.838103065 [784] -12.577074634 1.735801542 0.484405184 0.013854970 0.416285923 -1.975226723 0.938110382 -0.647308291 -0.706063547 [793] -0.082810695 -0.054601369 -0.014973073 0.127614348 18.906618087 0.502810107 -0.152371107 -0.036187828 very many thanks for your time and effort.... Yours sincerely, AKSHAY M KULKARNI ________________________________ From: Ivan Krylov <krylov.r00t at gmail.com> Sent: Thursday, March 21, 2019 9:06 PM To: r-help at r-project.org Cc: akshay kulkarni Subject: Re: [R] problem with nls.... One of the assumptions made by least squares method is that the residuals are independent and normally distributed with same parameters (or, in case of weighted regression, the standard deviation of the residual is known for every point). If this is the case, the parameters that minimize the sum of squared residuals are the maximum likelihood estimation of the true parameter values. The problem is, your data doesn't seem to adhere well to your formula. Have you tried plotting your HF1 - ((m/HF6) + 1) against HF6 (i.e. the residuals themselves)? With large residual values (outliers?), the loss function (i.e. sum of squared residuals) is disturbed and doesn't reflect the values you would expect to get otherwise. Try computing sum((HF1 - ((m/HF6) + 1))^2) for different values of m and see if changing m makes any difference. Try looking up "robust regression" (e.g. minimize sum of absolute residuals instead of squared residuals; a unique solution is not guaranteed, but it's be less disturbed by outliers). -- Best regards, Ivan [[alternative HTML version deleted]]
>>>>> Ivan Krylov >>>>> on Thu, 21 Mar 2019 18:36:20 +0300 writes:> One of the assumptions made by least squares method is that the > residuals are independent and normally distributed with same parameters > (or, in case of weighted regression, the standard deviation of the > residual is known for every point). If this is the case, the parameters > that minimize the sum of squared residuals are the maximum likelihood > estimation of the true parameter values. > The problem is, your data doesn't seem to adhere well to your formula. > Have you tried plotting your HF1 - ((m/HF6) + 1) against HF6 (i.e. the > residuals themselves)? With large residual values (outliers?), the loss > function (i.e. sum of squared residuals) is disturbed and doesn't > reflect the values you would expect to get otherwise. Try computing > sum((HF1 - ((m/HF6) + 1))^2) for different values of m and see if > changing m makes any difference. > Try looking up "robust regression" (e.g. minimize sum of absolute > residuals instead of squared residuals; a unique solution is not > guaranteed, but it's be less disturbed by outliers). Very good point, Ivan (as your previous ones on this thread - thank you! it's great to have a couple of smart and patient R-helpers such as you !!). CRAN package robustbase https://cran.r-project.org/package=robustbase has function nlrob() to do non-linear regression *robustly*, even using several methods, the default one using robustly re-weighted nls(). I'm the maintainer of the package and have been the "moderator" of the current nlrob() function, but as you can read on it's help page, I'm not the author of that function and its submethods: https://www.rdocumentation.org/packages/robustbase/versions/0.93-4/topics/nlrob Martin Maechler ETH Zurich > -- > Best regards, > Ivan > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code.
dear Ivan, I think my nls call is not converging to the proper value. I've gone through the Gauss Newton algorithm implemented by nls. How do I get the gradient, Hessian, and the jacobian of the objective function created by call to the nls? Perhaps I can compare all of them between my succesful nls call and the one that didn't. I've gone through debug(nls) but of no avail. Also, I've checked the residuals...they are approximately normally distributed....I am still wondering why the nls call is not getting converged....! Also, is it possible that if I give the vectors HF1,Hf5,HF6 it will help members in the mailing list to get to the bottom of the problem( I am sorry to have given the printed values of the vectors in my previous response to your mail...The dput values were very large. However, I will give the dput values this time around )? very many thanks for your time and effort.... yours sincerely, AKSHAY M KULKARNI ________________________________ From: Ivan Krylov <krylov.r00t at gmail.com> Sent: Thursday, March 21, 2019 9:06 PM To: r-help at r-project.org Cc: akshay kulkarni Subject: Re: [R] problem with nls.... One of the assumptions made by least squares method is that the residuals are independent and normally distributed with same parameters (or, in case of weighted regression, the standard deviation of the residual is known for every point). If this is the case, the parameters that minimize the sum of squared residuals are the maximum likelihood estimation of the true parameter values. The problem is, your data doesn't seem to adhere well to your formula. Have you tried plotting your HF1 - ((m/HF6) + 1) against HF6 (i.e. the residuals themselves)? With large residual values (outliers?), the loss function (i.e. sum of squared residuals) is disturbed and doesn't reflect the values you would expect to get otherwise. Try computing sum((HF1 - ((m/HF6) + 1))^2) for different values of m and see if changing m makes any difference. Try looking up "robust regression" (e.g. minimize sum of absolute residuals instead of squared residuals; a unique solution is not guaranteed, but it's be less disturbed by outliers). -- Best regards, Ivan [[alternative HTML version deleted]]
dear Ivan and members, I was able to solve my problem. After going through Gauss Newton method, I tried to extract the Hessian,Gradient and the Jacobian from the nls call. But I could not succeed. However I observed that my formula contained only one parameter. Then the objective function is just a quadratic in that parameter. I applied directly Newton Raphson method and got the value of the parameter. To my surprise, it was the same as the output of the nls call! I think I have to accept the value of the parameter, even though it is not a good fit. The world is very harsh(sometimes only?)! I should thank Ivan for initiating me in the right direction... very many thanks for your time and effort... Yours sincerely, AKSHAY M KULKARNI ________________________________ From: Ivan Krylov <krylov.r00t at gmail.com> Sent: Thursday, March 21, 2019 9:06 PM To: r-help at r-project.org Cc: akshay kulkarni Subject: Re: [R] problem with nls.... One of the assumptions made by least squares method is that the residuals are independent and normally distributed with same parameters (or, in case of weighted regression, the standard deviation of the residual is known for every point). If this is the case, the parameters that minimize the sum of squared residuals are the maximum likelihood estimation of the true parameter values. The problem is, your data doesn't seem to adhere well to your formula. Have you tried plotting your HF1 - ((m/HF6) + 1) against HF6 (i.e. the residuals themselves)? With large residual values (outliers?), the loss function (i.e. sum of squared residuals) is disturbed and doesn't reflect the values you would expect to get otherwise. Try computing sum((HF1 - ((m/HF6) + 1))^2) for different values of m and see if changing m makes any difference. Try looking up "robust regression" (e.g. minimize sum of absolute residuals instead of squared residuals; a unique solution is not guaranteed, but it's be less disturbed by outliers). -- Best regards, Ivan [[alternative HTML version deleted]]