euthymios kasvikis
2018-Aug-06 15:00 UTC
[R] Perform GEE regression in R with multiple dependent variables
First of all thanks for your advice. So suppose that I would like to use the multgee package. The model would be like: library(multgee) fitord <- ordLORgee(Ideo_Ordinal~ Machiavellianism+Psychopathy+Narcissism, data=RightWomen, id= ordered(factor(Country_ID))) summary(fitord) ???? ???, 6 ??? 2018 ???? 7:29 ?.?., ?/? Duncan Mackay <dulcalma at bigpond.com> ??????:> Hi > > Please read the geepack manual carefully. > GEE ordinal regression is not simple. > You need to format your data and do not use sample as a storage name. It is > the name of a function > > dta is storage > dta$Ideo_Ordinal <- ordered(factor(dta$Ideo_Ordinal)) > > m0 <- > ordgee(Ideo_Ordinal ~ Machiavellianism+Psychopathy+Narcissism ,data = dta, > id = Country_ID, > corstr = "independence") > > You need to see if the model is appropriate first and whether the sandwich > errors are right before you go further > > If this is your data you may not get credible results. > You need to read up on the requirements of GEEs and ordinal GEEs in > particular > There are a number of packages with different data requirements and > methods > If you have repeated measurements repolr; ?multgee (just from memory) > Small sample sizes are a problem there are a number of packages dealing > with > this but you will have to see which is best for you > Many do not offer a method for ordinal or multinomial GEE. > One further question to ask population specific or subject specific ie to > GEE or not to GEE > > > Regards > > Duncan > > Duncan Mackay > Department of Agronomy and Soil Science > University of New England > Armidale NSW 2350 > > > > -----Original Message----- > From: R-help [mailto:r-help-bounces at r-project.org] On Behalf Of euthymios > kasvikis > Sent: Saturday, 4 August 2018 07:30 > To: r-help at r-project.org > Subject: [R] Perform GEE regression in R with multiple dependent variables > > Im trying to perform generalized estimating equation (GEE) on the (sample) > dataset below with R and I would like some little guidance. First of all I > will describe my dataset. As you can see below it includes 5 variables. > Country_ID shows the country of the politician, Ideo_Ordinal his poltical > belief from 1 to 7 (far left to far right). Then we have measurements > regarding three characteristics. I would like to run an analysis based on > the country and the political beliefs of every politician (dependent > variables) in relation with the 3 characteristics. I have used the geepack > package using: > > library(geepack) > > samplem<-coef(summary(geeglm(sample$Ideo_Ordinal > ~Machiavellianism+Psychopathy+Narcissism ,data = sample, id > sample$Ideo_Ordinal, > corstr = "independence"))) %>% > rownames_to_column() %>% > mutate(lowerWald = Estimate-1.96*Std.err, # Lower Wald CI > upperWald=Estimate+1.96*Std.err, # Upper Wald CI > df=1, > ExpBeta = exp(Estimate)) %>% # Transformed estimate > mutate(lWald=exp(lowerWald), # Upper transformed > uWald=exp(upperWald)) # Lower transformed > samplem > > I would like to know if it is valid to add in this method the Country_ID > simultaneously with Ideo_Ordinal and how to do it. > > Country_ID Ideo_Ordinal Machiavellianism Narcissism Psychopathy > 3 1 3 0.250895132 0.155238716 0.128683755 > 5 1 3 -0.117725000 -0.336256435 -0.203137879 > 7 1 3 0.269509029 -0.260728261 0.086819555 > 9 1 6 0.108873496 0.175528190 0.182884928 > 14 1 3 0.173129951 0.054468468 0.155030794 > 15 1 6 -0.312088872 -0.414358301 -0.212599946 > 17 1 3 -0.297647658 -0.096523143 -0.228533352 > 18 1 3 -0.020389157 -0.210180866 -0.046687695 > 20 1 3 -0.523432382 -0.125114982 -0.431070629 > 21 1 1 0.040304508 0.022743463 0.233657881 > 22 1 3 0.253695988 -0.330825166 0.101122320 > 23 1 3 -0.478673895 -0.421801231 -0.422894791 > 27 1 6 -0.040856419 -0.566728704 -0.136069484 > 28 1 3 0.240040249 -0.398404825 0.135603114 > 29 1 6 -0.207631653 -0.005347621 -0.294935155 > 30 1 3 0.458042533 0.462935386 0.586244831 > 31 1 3 -0.259850232 -0.233074787 -0.092249465 > 33 1 3 0.002164223 -0.637668706 -0.267158031 > 34 1 6 0.050991955 -0.098030021 -0.043826848 > 36 1 3 -0.338052871 -0.168894328 -0.230198200 > 38 1 3 0.174382347 0.023807812 0.192963609 > 41 2 3 -0.227322148 -0.010016330 -0.095576329 > 42 2 3 -0.267514920 0.066108837 -0.218979873 > 43 2 3 0.421277754 0.385223920 0.421274111 > 44 2 3 -0.399592341 -0.498154998 -0.320402699 > 45 2 1 0.162038344 0.328116118 0.104105963 > 47 2 3 -0.080755709 0.003080287 -0.043568723 > 48 2 3 0.059474124 -0.447305420 0.003988071 > 49 2 3 -0.219773040 -0.312902659 -0.239057883 > 51 2 3 0.438659431 0.364042111 0.393014172 > 52 2 3 -0.088560903 -0.490889275 -0.006041054 > 53 2 3 -0.122612591 0.074438944 0.103722836 > 54 2 3 -0.450586055 -0.304253061 -0.132365179 > 55 2 6 -0.710545197 -0.451329850 -0.764201786 > 56 2 3 0.330718447 0.335460128 0.429173481 > 57 2 3 0.442508023 0.297522144 0.407155726 > 60 2 3 0.060797815 -0.096516876 -0.012802977 > 61 2 3 -0.250757764 -0.113219864 -0.215345379 > 62 2 1 0.153654345 -0.089615287 0.118626045 > 65 2 3 0.042969508 -0.486999608 -0.080829636 > 66 3 3 0.158337022 0.208229002 0.241607154 > 67 3 3 0.220237408 0.397914524 0.262207709 > 69 3 3 0.200558577 0.244419633 0.301732113 > 71 3 3 0.690244689 0.772692418 0.625921098 > 72 3 3 0.189810070 0.377774321 0.293988340 > 73 3 3 -0.385724422 -0.262131032 -0.373159652 > 74 3 3 -0.124095769 -0.109816334 -0.127157915 > 75 3 1 0.173299879 0.453592671 0.325357383 > 76 3 3 -0.598215129 -0.643286651 -0.423824759 > 77 3 3 -0.420558406 -0.361763025 -0.465612116 > 78 3 3 -0.176788569 -0.305506924 -0.203730879 > 80 3 3 -0.114790731 0.262392918 0.061382073 > 81 3 3 -0.274904173 -0.342603918 -0.302761994 > 82 3 3 -0.146902101 -0.059558818 -0.120550957 > 84 3 3 0.038303792 -0.139833875 0.170005914 > 85 3 3 -0.220212221 -0.541399757 -0.555201764 > 87 3 3 0.255300386 0.179484246 0.421428096 > 88 3 6 -0.548823069 -0.405541620 -0.322935805 > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > >[[alternative HTML version deleted]]
euthymios kasvikis
2018-Aug-06 16:21 UTC
[R] Perform GEE regression in R with multiple dependent variables
Or library(multgee) fitord <- ordLORgee(Ideo_Ordinal~ Machiavellianism+Psychopathy+Narcissism, data=RightWomen, id= Politician_ID,repeated=Country_ID) summary(fitord) Should I use dta$Ideo_Ordinal <- ordered(factor(dta$Ideo_Ordinal)) ? ???? ???, 6 ??? 2018 ???? 6:00 ?.?., ?/? euthymios kasvikis < euthymios.k.kasvikis at gmail.com> ??????:> First of all thanks for your advice. So suppose that I would like to use > the multgee package. The model would be like: > library(multgee) > fitord <- ordLORgee(Ideo_Ordinal~ Machiavellianism+Psychopathy+Narcissism, > data=RightWomen, > id= ordered(factor(Country_ID))) > summary(fitord) > > ???? ???, 6 ??? 2018 ???? 7:29 ?.?., ?/? Duncan Mackay < > dulcalma at bigpond.com> ??????: > >> Hi >> >> Please read the geepack manual carefully. >> GEE ordinal regression is not simple. >> You need to format your data and do not use sample as a storage name. It >> is >> the name of a function >> >> dta is storage >> dta$Ideo_Ordinal <- ordered(factor(dta$Ideo_Ordinal)) >> >> m0 <- >> ordgee(Ideo_Ordinal ~ Machiavellianism+Psychopathy+Narcissism ,data = dta, >> id = Country_ID, >> corstr = "independence") >> >> You need to see if the model is appropriate first and whether the sandwich >> errors are right before you go further >> >> If this is your data you may not get credible results. >> You need to read up on the requirements of GEEs and ordinal GEEs in >> particular >> There are a number of packages with different data requirements and >> methods >> If you have repeated measurements repolr; ?multgee (just from memory) >> Small sample sizes are a problem there are a number of packages dealing >> with >> this but you will have to see which is best for you >> Many do not offer a method for ordinal or multinomial GEE. >> One further question to ask population specific or subject specific ie >> to >> GEE or not to GEE >> >> >> Regards >> >> Duncan >> >> Duncan Mackay >> Department of Agronomy and Soil Science >> University of New England >> Armidale NSW 2350 >> >> >> >> -----Original Message----- >> From: R-help [mailto:r-help-bounces at r-project.org] On Behalf Of euthymios >> kasvikis >> Sent: Saturday, 4 August 2018 07:30 >> To: r-help at r-project.org >> Subject: [R] Perform GEE regression in R with multiple dependent variables >> >> Im trying to perform generalized estimating equation (GEE) on the (sample) >> dataset below with R and I would like some little guidance. First of all I >> will describe my dataset. As you can see below it includes 5 variables. >> Country_ID shows the country of the politician, Ideo_Ordinal his poltical >> belief from 1 to 7 (far left to far right). Then we have measurements >> regarding three characteristics. I would like to run an analysis based on >> the country and the political beliefs of every politician (dependent >> variables) in relation with the 3 characteristics. I have used the geepack >> package using: >> >> library(geepack) >> >> samplem<-coef(summary(geeglm(sample$Ideo_Ordinal >> ~Machiavellianism+Psychopathy+Narcissism ,data = sample, id >> sample$Ideo_Ordinal, >> corstr = "independence"))) %>% >> rownames_to_column() %>% >> mutate(lowerWald = Estimate-1.96*Std.err, # Lower Wald CI >> upperWald=Estimate+1.96*Std.err, # Upper Wald CI >> df=1, >> ExpBeta = exp(Estimate)) %>% # Transformed estimate >> mutate(lWald=exp(lowerWald), # Upper transformed >> uWald=exp(upperWald)) # Lower transformed >> samplem >> >> I would like to know if it is valid to add in this method the Country_ID >> simultaneously with Ideo_Ordinal and how to do it. >> >> Country_ID Ideo_Ordinal Machiavellianism Narcissism Psychopathy >> 3 1 3 0.250895132 0.155238716 >> 0.128683755 >> 5 1 3 -0.117725000 -0.336256435 >> -0.203137879 >> 7 1 3 0.269509029 -0.260728261 >> 0.086819555 >> 9 1 6 0.108873496 0.175528190 >> 0.182884928 >> 14 1 3 0.173129951 0.054468468 >> 0.155030794 >> 15 1 6 -0.312088872 -0.414358301 >> -0.212599946 >> 17 1 3 -0.297647658 -0.096523143 >> -0.228533352 >> 18 1 3 -0.020389157 -0.210180866 >> -0.046687695 >> 20 1 3 -0.523432382 -0.125114982 >> -0.431070629 >> 21 1 1 0.040304508 0.022743463 >> 0.233657881 >> 22 1 3 0.253695988 -0.330825166 >> 0.101122320 >> 23 1 3 -0.478673895 -0.421801231 >> -0.422894791 >> 27 1 6 -0.040856419 -0.566728704 >> -0.136069484 >> 28 1 3 0.240040249 -0.398404825 >> 0.135603114 >> 29 1 6 -0.207631653 -0.005347621 >> -0.294935155 >> 30 1 3 0.458042533 0.462935386 >> 0.586244831 >> 31 1 3 -0.259850232 -0.233074787 >> -0.092249465 >> 33 1 3 0.002164223 -0.637668706 >> -0.267158031 >> 34 1 6 0.050991955 -0.098030021 >> -0.043826848 >> 36 1 3 -0.338052871 -0.168894328 >> -0.230198200 >> 38 1 3 0.174382347 0.023807812 >> 0.192963609 >> 41 2 3 -0.227322148 -0.010016330 >> -0.095576329 >> 42 2 3 -0.267514920 0.066108837 >> -0.218979873 >> 43 2 3 0.421277754 0.385223920 >> 0.421274111 >> 44 2 3 -0.399592341 -0.498154998 >> -0.320402699 >> 45 2 1 0.162038344 0.328116118 >> 0.104105963 >> 47 2 3 -0.080755709 0.003080287 >> -0.043568723 >> 48 2 3 0.059474124 -0.447305420 >> 0.003988071 >> 49 2 3 -0.219773040 -0.312902659 >> -0.239057883 >> 51 2 3 0.438659431 0.364042111 >> 0.393014172 >> 52 2 3 -0.088560903 -0.490889275 >> -0.006041054 >> 53 2 3 -0.122612591 0.074438944 >> 0.103722836 >> 54 2 3 -0.450586055 -0.304253061 >> -0.132365179 >> 55 2 6 -0.710545197 -0.451329850 >> -0.764201786 >> 56 2 3 0.330718447 0.335460128 >> 0.429173481 >> 57 2 3 0.442508023 0.297522144 >> 0.407155726 >> 60 2 3 0.060797815 -0.096516876 >> -0.012802977 >> 61 2 3 -0.250757764 -0.113219864 >> -0.215345379 >> 62 2 1 0.153654345 -0.089615287 >> 0.118626045 >> 65 2 3 0.042969508 -0.486999608 >> -0.080829636 >> 66 3 3 0.158337022 0.208229002 >> 0.241607154 >> 67 3 3 0.220237408 0.397914524 >> 0.262207709 >> 69 3 3 0.200558577 0.244419633 >> 0.301732113 >> 71 3 3 0.690244689 0.772692418 >> 0.625921098 >> 72 3 3 0.189810070 0.377774321 >> 0.293988340 >> 73 3 3 -0.385724422 -0.262131032 >> -0.373159652 >> 74 3 3 -0.124095769 -0.109816334 >> -0.127157915 >> 75 3 1 0.173299879 0.453592671 >> 0.325357383 >> 76 3 3 -0.598215129 -0.643286651 >> -0.423824759 >> 77 3 3 -0.420558406 -0.361763025 >> -0.465612116 >> 78 3 3 -0.176788569 -0.305506924 >> -0.203730879 >> 80 3 3 -0.114790731 0.262392918 >> 0.061382073 >> 81 3 3 -0.274904173 -0.342603918 >> -0.302761994 >> 82 3 3 -0.146902101 -0.059558818 >> -0.120550957 >> 84 3 3 0.038303792 -0.139833875 >> 0.170005914 >> 85 3 3 -0.220212221 -0.541399757 >> -0.555201764 >> 87 3 3 0.255300386 0.179484246 >> 0.421428096 >> 88 3 6 -0.548823069 -0.405541620 >> -0.322935805 >> >> [[alternative HTML version deleted]] >> >> ______________________________________________ >> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. >> >>[[alternative HTML version deleted]]
Duncan Mackay
2018-Aug-07 04:16 UTC
[R] Perform GEE regression in R with multiple dependent variables
It is quite a while (years) since I used multgee. There are several papers published by Agresti and ?Touloumis et al 1 in Biometrics in 2013 and another in JSS. I am unable to reference them at the moment; you need to read them. I cannot remember how the dependent variable (y) is formatted: ordered or numerical see package help. The repeated argument is for longitudinal/ repeated measurements: Country_ID if is refers to countries is therefore an x variable (factor) How you set up you model depends on what your model is testing. Remember ordinal GEE in unlike normal modelling Regards Duncan From: euthymios kasvikis [mailto:euthymios.k.kasvikis at gmail.com] Sent: Tuesday, 7 August 2018 02:22 To: dulcalma at bigpond.com Cc: r-help at r-project.org Subject: Re: [R] Perform GEE regression in R with multiple dependent variables Or library(multgee) fitord <- ordLORgee(Ideo_Ordinal~ Machiavellianism+Psychopathy+Narcissism, data=RightWomen, id= Politician_ID,repeated=Country_ID) summary(fitord) Should I use dta$Ideo_Ordinal <- ordered(factor(dta$Ideo_Ordinal)) ? ???? ???, 6 ??? 2018 ???? 6:00 ?.?., ?/? euthymios kasvikis <euthymios.k.kasvikis at gmail.com> ??????: First of all thanks for your advice. So suppose that I would like to use the multgee package. The model would be like: library(multgee) fitord <- ordLORgee(Ideo_Ordinal~ Machiavellianism+Psychopathy+Narcissism, data=RightWomen, id= ordered(factor(Country_ID))) summary(fitord) ???? ???, 6 ??? 2018 ???? 7:29 ?.?., ?/? Duncan Mackay <dulcalma at bigpond.com> ??????: Hi Please read the geepack manual carefully. GEE ordinal regression is not simple. You need to format your data and do not use sample as a storage name. It is the name of a function dta is storage dta$Ideo_Ordinal <- ordered(factor(dta$Ideo_Ordinal)) m0 <- ordgee(Ideo_Ordinal ~ Machiavellianism+Psychopathy+Narcissism ,data = dta, id = Country_ID, corstr = "independence") You need to see if the model is appropriate first and whether the sandwich errors are right before you go further If this is your data you may not get credible results. You need to read up on the requirements of GEEs and ordinal GEEs in particular There are a number of packages with different data requirements and methods If you have repeated measurements repolr; ?multgee (just from memory) Small sample sizes are a problem there are a number of packages dealing with this but you will have to see which is best for you Many do not offer a method for ordinal or multinomial GEE. One further question to ask population specific or subject specific ie to GEE or not to GEE Regards Duncan Duncan Mackay Department of Agronomy and Soil Science University of New England Armidale NSW 2350 -----Original Message----- From: R-help [mailto:r-help-bounces at r-project.org] On Behalf Of euthymios kasvikis Sent: Saturday, 4 August 2018 07:30 To: r-help at r-project.org Subject: [R] Perform GEE regression in R with multiple dependent variables Im trying to perform generalized estimating equation (GEE) on the (sample) dataset below with R and I would like some little guidance. First of all I will describe my dataset. As you can see below it includes 5 variables. Country_ID shows the country of the politician, Ideo_Ordinal his poltical belief from 1 to 7 (far left to far right). Then we have measurements regarding three characteristics. I would like to run an analysis based on the country and the political beliefs of every politician (dependent variables) in relation with the 3 characteristics. I have used the geepack package using: library(geepack) samplem<-coef(summary(geeglm(sample$Ideo_Ordinal ~Machiavellianism+Psychopathy+Narcissism ,data = sample, id sample$Ideo_Ordinal, corstr = "independence"))) %>% rownames_to_column() %>% mutate(lowerWald = Estimate-1.96*Std.err, # Lower Wald CI upperWald=Estimate+1.96*Std.err, # Upper Wald CI df=1, ExpBeta = exp(Estimate)) %>% # Transformed estimate mutate(lWald=exp(lowerWald), # Upper transformed uWald=exp(upperWald)) # Lower transformed samplem I would like to know if it is valid to add in this method the Country_ID simultaneously with Ideo_Ordinal and how to do it. Country_ID Ideo_Ordinal Machiavellianism Narcissism Psychopathy 3 1 3 0.250895132 0.155238716 0.128683755 5 1 3 -0.117725000 -0.336256435 -0.203137879 7 1 3 0.269509029 -0.260728261 0.086819555 9 1 6 0.108873496 0.175528190 0.182884928 14 1 3 0.173129951 0.054468468 0.155030794 15 1 6 -0.312088872 -0.414358301 -0.212599946 17 1 3 -0.297647658 -0.096523143 -0.228533352 18 1 3 -0.020389157 -0.210180866 -0.046687695 20 1 3 -0.523432382 -0.125114982 -0.431070629 21 1 1 0.040304508 0.022743463 0.233657881 22 1 3 0.253695988 -0.330825166 0.101122320 23 1 3 -0.478673895 -0.421801231 -0.422894791 27 1 6 -0.040856419 -0.566728704 -0.136069484 28 1 3 0.240040249 -0.398404825 0.135603114 29 1 6 -0.207631653 -0.005347621 -0.294935155 30 1 3 0.458042533 0.462935386 0.586244831 31 1 3 -0.259850232 -0.233074787 -0.092249465 33 1 3 0.002164223 -0.637668706 -0.267158031 34 1 6 0.050991955 -0.098030021 -0.043826848 36 1 3 -0.338052871 -0.168894328 -0.230198200 38 1 3 0.174382347 0.023807812 0.192963609 41 2 3 -0.227322148 -0.010016330 -0.095576329 42 2 3 -0.267514920 0.066108837 -0.218979873 43 2 3 0.421277754 0.385223920 0.421274111 44 2 3 -0.399592341 -0.498154998 -0.320402699 45 2 1 0.162038344 0.328116118 0.104105963 47 2 3 -0.080755709 0.003080287 -0.043568723 48 2 3 0.059474124 -0.447305420 0.003988071 49 2 3 -0.219773040 -0.312902659 -0.239057883 51 2 3 0.438659431 0.364042111 0.393014172 52 2 3 -0.088560903 -0.490889275 -0.006041054 53 2 3 -0.122612591 0.074438944 0.103722836 54 2 3 -0.450586055 -0.304253061 -0.132365179 55 2 6 -0.710545197 -0.451329850 -0.764201786 56 2 3 0.330718447 0.335460128 0.429173481 57 2 3 0.442508023 0.297522144 0.407155726 60 2 3 0.060797815 -0.096516876 -0.012802977 61 2 3 -0.250757764 -0.113219864 -0.215345379 62 2 1 0.153654345 -0.089615287 0.118626045 65 2 3 0.042969508 -0.486999608 -0.080829636 66 3 3 0.158337022 0.208229002 0.241607154 67 3 3 0.220237408 0.397914524 0.262207709 69 3 3 0.200558577 0.244419633 0.301732113 71 3 3 0.690244689 0.772692418 0.625921098 72 3 3 0.189810070 0.377774321 0.293988340 73 3 3 -0.385724422 -0.262131032 -0.373159652 74 3 3 -0.124095769 -0.109816334 -0.127157915 75 3 1 0.173299879 0.453592671 0.325357383 76 3 3 -0.598215129 -0.643286651 -0.423824759 77 3 3 -0.420558406 -0.361763025 -0.465612116 78 3 3 -0.176788569 -0.305506924 -0.203730879 80 3 3 -0.114790731 0.262392918 0.061382073 81 3 3 -0.274904173 -0.342603918 -0.302761994 82 3 3 -0.146902101 -0.059558818 -0.120550957 84 3 3 0.038303792 -0.139833875 0.170005914 85 3 3 -0.220212221 -0.541399757 -0.555201764 87 3 3 0.255300386 0.179484246 0.421428096 88 3 6 -0.548823069 -0.405541620 -0.322935805 [[alternative HTML version deleted]] ______________________________________________ R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. [[alternative HTML version deleted]]