Hi all, thanks for the suggestions, I did some timing tests, see below. Unfortunately the aggregate.nx.ny.array.apply, does not produce the expected result. So the fastest seems to be the aggregate.nx.ny.expand.grid, though the double for loop is not that much slower. many thanks Peter> tst=matrix(1:(1440*360),ncol=1440,nrow=360) > system.time( {for(i in 1:10) tst_2x2=aggregate.nx.ny.forloop(tst,2,2,mean,na.rm=T)})user system elapsed 11.227 0.073 11.371> system.time( {for(i in 1:10) tst_2x2=aggregate.nx.ny.interaction(tst,2,2,mean,na.rm=T)})user system elapsed 26.354 0.475 26.880> system.time( {for(i in 1:10) tst_2x2=aggregate.nx.ny.expand.grid(tst,2,2,mean,na.rm=T)})user system elapsed 9.683 0.055 9.763> system.time( {for(i in 1:10) tst_2x2=aggregate.nx.ny.array.apply(tst,2,2,mean,na.rm=T)})user system elapsed 7.693 0.055 7.800> tst.small=matrix(1:(8*4),ncol=8,nrow=4) > aggregate.nx.ny.forloop = function(data,nx=2,ny=2, FUN=mean,...)+ { + nlon=nrow(data) + nlat=ncol(data) + newdata=matrix(NA,nrow=nlon/nx,ncol=nlat/ny) + dim(newdata) + for(ilon in seq(1,nlon,nx)) { + for(ilat in seq(1,nlat,ny)) { + ilon_new=1+(ilon-1)/nx + ilat_new=1+(ilat-1)/ny + newdata[ilon_new,ilat_new] = FUN(data[ilon+0:1,ilat+0:1],...) + } + } + newdata + }> aggregate.nx.ny.forloop(tst.small)[,1] [,2] [,3] [,4] [1,] 3.5 11.5 19.5 27.5 [2,] 5.5 13.5 21.5 29.5> > aggregate.nx.ny.interaction = function(data,nx=2,ny=2, FUN=mean,...)+ { + + nlon=nrow(data) + nlat=ncol(data) + newdata=matrix(NA,nrow=nlon/nx,ncol=nlat/ny) + newdata[] <- tapply( data, interaction( (row(data)+1) %/% 2, (col(data)+1) %/% 2 ), FUN, ...) + newdata + }> aggregate.nx.ny.interaction(tst.small)[,1] [,2] [,3] [,4] [1,] 3.5 11.5 19.5 27.5 [2,] 5.5 13.5 21.5 29.5> > aggregate.nx.ny.expand.grid = function(data,nx=2,ny=2, FUN=mean,...)+ { + ilon <- seq(1,ncol(data),nx) + ilat <- seq(1,nrow(data),ny) + cells <- as.matrix(expand.grid(ilat, ilon)) + blocks <- apply(cells, 1, function(x) data[x[1]:(x[1]+1),x[2]:(x[2]+1)]) + block.means <- colMeans(blocks) + matrix(block.means, nrow(data)/ny, ncol(data)/nx) + }> aggregate.nx.ny.expand.grid(tst.small)[,1] [,2] [,3] [,4] [1,] 3.5 11.5 19.5 27.5 [2,] 5.5 13.5 21.5 29.5> > aggregate.nx.ny.array.apply = function(data,nx=2,ny=2, FUN=mean,...) {+ a <- array(data, dim = c(ny, nrow( data ) %/% ny, ncol( data ) %/% nx)) + apply( a, c(2, 3), FUN, ... ) + }> aggregate.nx.ny.array.apply(tst.small)[,1] [,2] [,3] [,4] [1,] 1.5 5.5 9.5 13.5 [2,] 3.5 7.5 11.5 15.5> On 28 Jul 2016, at 00:26, David Winsemius <dwinsemius at comcast.net> wrote: > > >> On Jul 27, 2016, at 12:02 PM, Jeff Newmiller <jdnewmil at dcn.davis.ca.us> wrote: >> >> An alternative (more compact, not necessarily faster, because apply is still a for loop inside): >> >> f <- function( m, nx, ny ) { >> # redefine the dimensions of my >> a <- array( m >> , dim = c( ny >> , nrow( m ) %/% ny >> , ncol( m ) %/% nx ) >> ) >> # apply mean over dim 1 >> apply( a, c( 2, 3 ), FUN=mean ) >> } >> f( tst, nx, ny ) > > Here's an apparently loopless strategy, although I suspect the code for interaction (and maybe tapply as well?) uses a loop. > > > tst_2X2 <- matrix(NA, ,ncol=4,nrow=2) > > tst_2x2[] <- tapply( tst, interaction( (row(tst)+1) %/% 2, (col(tst)+1) %/% 2 ), mean) > > tst_2x2 > > [,1] [,2] [,3] [,4] > [1,] 3.5 11.5 19.5 27.5 > [2,] 5.5 13.5 21.5 29.5 > > -- > David. > > >> >> -- >> Sent from my phone. Please excuse my brevity. >> >> On July 27, 2016 9:08:32 AM PDT, David L Carlson <dcarlson at tamu.edu> wrote: >>> This should be faster. It uses apply() across the blocks. >>> >>>> ilon <- seq(1,8,nx) >>>> ilat <- seq(1,4,ny) >>>> cells <- as.matrix(expand.grid(ilat, ilon)) >>>> blocks <- apply(cells, 1, function(x) tst[x[1]:(x[1]+1), >>> x[2]:(x[2]+1)]) >>>> block.means <- colMeans(blocks) >>>> tst_2x2 <- matrix(block.means, 2, 4) >>>> tst_2x2 >>> [,1] [,2] [,3] [,4] >>> [1,] 3.5 11.5 19.5 27.5 >>> [2,] 5.5 13.5 21.5 29.5 >>> >>> ------------------------------------- >>> David L Carlson >>> Department of Anthropology >>> Texas A&M University >>> College Station, TX 77840-4352 >>> >>> >>> >>> -----Original Message----- >>> From: R-help [mailto:r-help-bounces at r-poject.org] On Behalf Of Anthoni, >>> Peter (IMK) >>> Sent: Wednesday, July 27, 2016 6:14 AM >>> To: r-help at r-project.org >>> Subject: [R] Aggregate matrix in a 2 by 2 manor >>> >>> Hi all, >>> >>> I need to aggregate some matrix data (1440x720) to a lower dimension >>> (720x360) for lots of years and variables >>> >>> I can do double for loop, but that will be slow. Anybody know a quicker >>> way? >>> >>> here an example with a smaller matrix size: >>> >>> tst=matrix(1:(8*4),ncol=8,nrow=4) >>> tst_2x2=matrix(NA,ncol=4,nrow=2) >>> nx=2 >>> ny=2 >>> for(ilon in seq(1,8,nx)) { >>> for (ilat in seq(1,4,ny)) { >>> ilon_2x2=1+(ilon-1)/nx >>> ilat_2x2=1+(ilat-1)/ny >>> tst_2x2[ilat_2x2,ilon_2x2] = mean(tst[ilat+0:1,ilon+0:1]) >>> } >>> } >>> >>> tst >>> tst_2x2 >>> >>>> tst >>> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] >>> [1,] 1 5 9 13 17 21 25 29 >>> [2,] 2 6 10 14 18 22 26 30 >>> [3,] 3 7 11 15 19 23 27 31 >>> [4,] 4 8 12 16 20 24 28 32 >>> >>>> tst_2x2 >>> [,1] [,2] [,3] [,4] >>> [1,] 3.5 11.5 19.5 27.5 >>> [2,] 5.5 13.5 21.5 29.5 >>> >>> >>> I though a cast to 3d-array might do the trick and apply over the new >>> dimension, but that does not work, since it casts the data along the >>> row. >>>> matrix(apply(array(tst,dim=c(nx,ny,8)),3,mean),nrow=nrow(tst)/ny) >>> [,1] [,2] [,3] [,4] >>> [1,] 2.5 10.5 18.5 26.5 >>> [2,] 6.5 14.5 22.5 30.5 >>> >>> >>> cheers >>> Peter >>> >>> ______________________________________________ >>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>> https://stat.ethz.ch/mailman/listinfo/r-help >>> PLEASE do read the posting guide >>> http://www.R-project.org/posting-guide.html >>> and provide commented, minimal, self-contained, reproducible code. >>> >>> ______________________________________________ >>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>> https://stat.ethz.ch/mailman/listinfo/r-help >>> PLEASE do read the posting guide >>> http://www.R-project.org/posting-guide.html >>> and provide commented, minimal, self-contained, reproducible code. >> >> ______________________________________________ >> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. > > David Winsemius > Alameda, CA, USA >
For the record, the array.apply code can be fixed as below, but then it is slower than the expand.grid version. aggregate.nx.ny.array.apply <- function(dta,nx=2,ny=2, FUN=mean,...) { a <- array(dta, dim = c(ny, nrow( dta ) %/% ny, nx, ncol( dta ) %/% nx)) apply( a, c(2, 4), FUN, ... ) } -- Sent from my phone. Please excuse my brevity. On July 30, 2016 11:06:16 AM PDT, "Anthoni, Peter (IMK)" <peter.anthoni at kit.edu> wrote:>Hi all, > >thanks for the suggestions, I did some timing tests, see below. >Unfortunately the aggregate.nx.ny.array.apply, does not produce the >expected result. >So the fastest seems to be the aggregate.nx.ny.expand.grid, though the >double for loop is not that much slower. > >many thanks >Peter > >> tst=matrix(1:(1440*360),ncol=1440,nrow=360) >> system.time( {for(i in 1:10) >tst_2x2=aggregate.nx.ny.forloop(tst,2,2,mean,na.rm=T)}) > user system elapsed > 11.227 0.073 11.371 >> system.time( {for(i in 1:10) >tst_2x2=aggregate.nx.ny.interaction(tst,2,2,mean,na.rm=T)}) > user system elapsed > 26.354 0.475 26.880 >> system.time( {for(i in 1:10) >tst_2x2=aggregate.nx.ny.expand.grid(tst,2,2,mean,na.rm=T)}) > user system elapsed > 9.683 0.055 9.763 >> system.time( {for(i in 1:10) >tst_2x2=aggregate.nx.ny.array.apply(tst,2,2,mean,na.rm=T)}) > user system elapsed > 7.693 0.055 7.800 > >> tst.small=matrix(1:(8*4),ncol=8,nrow=4) >> aggregate.nx.ny.forloop = function(data,nx=2,ny=2, FUN=mean,...) >+ { >+ nlon=nrow(data) >+ nlat=ncol(data) >+ newdata=matrix(NA,nrow=nlon/nx,ncol=nlat/ny) >+ dim(newdata) >+ for(ilon in seq(1,nlon,nx)) { >+ for(ilat in seq(1,nlat,ny)) { >+ ilon_new=1+(ilon-1)/nx >+ ilat_new=1+(ilat-1)/ny >+ newdata[ilon_new,ilat_new] = FUN(data[ilon+0:1,ilat+0:1],...) >+ } >+ } >+ newdata >+ } >> aggregate.nx.ny.forloop(tst.small) > [,1] [,2] [,3] [,4] >[1,] 3.5 11.5 19.5 27.5 >[2,] 5.5 13.5 21.5 29.5 >> >> aggregate.nx.ny.interaction = function(data,nx=2,ny=2, FUN=mean,...) >+ { >+ >+ nlon=nrow(data) >+ nlat=ncol(data) >+ newdata=matrix(NA,nrow=nlon/nx,ncol=nlat/ny) >+ newdata[] <- tapply( data, interaction( (row(data)+1) %/% 2, >(col(data)+1) %/% 2 ), FUN, ...) >+ newdata >+ } >> aggregate.nx.ny.interaction(tst.small) > [,1] [,2] [,3] [,4] >[1,] 3.5 11.5 19.5 27.5 >[2,] 5.5 13.5 21.5 29.5 >> >> aggregate.nx.ny.expand.grid = function(data,nx=2,ny=2, FUN=mean,...) >+ { >+ ilon <- seq(1,ncol(data),nx) >+ ilat <- seq(1,nrow(data),ny) >+ cells <- as.matrix(expand.grid(ilat, ilon)) >+ blocks <- apply(cells, 1, function(x) >data[x[1]:(x[1]+1),x[2]:(x[2]+1)]) >+ block.means <- colMeans(blocks) >+ matrix(block.means, nrow(data)/ny, ncol(data)/nx) >+ } >> aggregate.nx.ny.expand.grid(tst.small) > [,1] [,2] [,3] [,4] >[1,] 3.5 11.5 19.5 27.5 >[2,] 5.5 13.5 21.5 29.5 >> >> aggregate.nx.ny.array.apply = function(data,nx=2,ny=2, FUN=mean,...) >{ >+ a <- array(data, dim = c(ny, nrow( data ) %/% ny, ncol( data ) %/% >nx)) >+ apply( a, c(2, 3), FUN, ... ) >+ } >> aggregate.nx.ny.array.apply(tst.small) > [,1] [,2] [,3] [,4] >[1,] 1.5 5.5 9.5 13.5 >[2,] 3.5 7.5 11.5 15.5 > > > >> On 28 Jul 2016, at 00:26, David Winsemius <dwinsemius at comcast.net> >wrote: >> >> >>> On Jul 27, 2016, at 12:02 PM, Jeff Newmiller ><jdnewmil at dcn.davis.ca.us> wrote: >>> >>> An alternative (more compact, not necessarily faster, because apply >is still a for loop inside): >>> >>> f <- function( m, nx, ny ) { >>> # redefine the dimensions of my >>> a <- array( m >>> , dim = c( ny >>> , nrow( m ) %/% ny >>> , ncol( m ) %/% nx ) >>> ) >>> # apply mean over dim 1 >>> apply( a, c( 2, 3 ), FUN=mean ) >>> } >>> f( tst, nx, ny ) >> >> Here's an apparently loopless strategy, although I suspect the code >for interaction (and maybe tapply as well?) uses a loop. >> >> >> tst_2X2 <- matrix(NA, ,ncol=4,nrow=2) >> >> tst_2x2[] <- tapply( tst, interaction( (row(tst)+1) %/% 2, >(col(tst)+1) %/% 2 ), mean) >> >> tst_2x2 >> >> [,1] [,2] [,3] [,4] >> [1,] 3.5 11.5 19.5 27.5 >> [2,] 5.5 13.5 21.5 29.5 >> >> -- >> David. >> >> >>> >>> -- >>> Sent from my phone. Please excuse my brevity. >>> >>> On July 27, 2016 9:08:32 AM PDT, David L Carlson <dcarlson at tamu.edu> >wrote: >>>> This should be faster. It uses apply() across the blocks. >>>> >>>>> ilon <- seq(1,8,nx) >>>>> ilat <- seq(1,4,ny) >>>>> cells <- as.matrix(expand.grid(ilat, ilon)) >>>>> blocks <- apply(cells, 1, function(x) tst[x[1]:(x[1]+1), >>>> x[2]:(x[2]+1)]) >>>>> block.means <- colMeans(blocks) >>>>> tst_2x2 <- matrix(block.means, 2, 4) >>>>> tst_2x2 >>>> [,1] [,2] [,3] [,4] >>>> [1,] 3.5 11.5 19.5 27.5 >>>> [2,] 5.5 13.5 21.5 29.5 >>>> >>>> ------------------------------------- >>>> David L Carlson >>>> Department of Anthropology >>>> Texas A&M University >>>> College Station, TX 77840-4352 >>>> >>>> >>>> >>>> -----Original Message----- >>>> From: R-help [mailto:r-help-bounces at r-poject.org] On Behalf Of >Anthoni, >>>> Peter (IMK) >>>> Sent: Wednesday, July 27, 2016 6:14 AM >>>> To: r-help at r-project.org >>>> Subject: [R] Aggregate matrix in a 2 by 2 manor >>>> >>>> Hi all, >>>> >>>> I need to aggregate some matrix data (1440x720) to a lower >dimension >>>> (720x360) for lots of years and variables >>>> >>>> I can do double for loop, but that will be slow. Anybody know a >quicker >>>> way? >>>> >>>> here an example with a smaller matrix size: >>>> >>>> tst=matrix(1:(8*4),ncol=8,nrow=4) >>>> tst_2x2=matrix(NA,ncol=4,nrow=2) >>>> nx=2 >>>> ny=2 >>>> for(ilon in seq(1,8,nx)) { >>>> for (ilat in seq(1,4,ny)) { >>>> ilon_2x2=1+(ilon-1)/nx >>>> ilat_2x2=1+(ilat-1)/ny >>>> tst_2x2[ilat_2x2,ilon_2x2] = mean(tst[ilat+0:1,ilon+0:1]) >>>> } >>>> } >>>> >>>> tst >>>> tst_2x2 >>>> >>>>> tst >>>> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] >>>> [1,] 1 5 9 13 17 21 25 29 >>>> [2,] 2 6 10 14 18 22 26 30 >>>> [3,] 3 7 11 15 19 23 27 31 >>>> [4,] 4 8 12 16 20 24 28 32 >>>> >>>>> tst_2x2 >>>> [,1] [,2] [,3] [,4] >>>> [1,] 3.5 11.5 19.5 27.5 >>>> [2,] 5.5 13.5 21.5 29.5 >>>> >>>> >>>> I though a cast to 3d-array might do the trick and apply over the >new >>>> dimension, but that does not work, since it casts the data along >the >>>> row. >>>>> matrix(apply(array(tst,dim=c(nx,ny,8)),3,mean),nrow=nrow(tst)/ny) >>>> [,1] [,2] [,3] [,4] >>>> [1,] 2.5 10.5 18.5 26.5 >>>> [2,] 6.5 14.5 22.5 30.5 >>>> >>>> >>>> cheers >>>> Peter >>>> >>>> ______________________________________________ >>>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>>> https://stat.ethz.ch/mailman/listinfo/r-help >>>> PLEASE do read the posting guide >>>> http://www.R-project.org/posting-guide.html >>>> and provide commented, minimal, self-contained, reproducible code. >>>> >>>> ______________________________________________ >>>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>>> https://stat.ethz.ch/mailman/listinfo/r-help >>>> PLEASE do read the posting guide >>>> http://www.R-project.org/posting-guide.html >>>> and provide commented, minimal, self-contained, reproducible code. >>> >>> ______________________________________________ >>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>> https://stat.ethz.ch/mailman/listinfo/r-help >>> PLEASE do read the posting guide >http://www.R-project.org/posting-guide.html >>> and provide commented, minimal, self-contained, reproducible code. >> >> David Winsemius >> Alameda, CA, USA >>
If you don't need all that FUN flexibility, you can get this done way faster with the aperm and colMeans functions: tst <- matrix( seq.int( 1440 * 360 ) , ncol = 1440 , nrow = 360 ) tst.small <- matrix( seq.int( 8 * 4 ) , ncol = 8 , nrow = 4 ) aggregate.nx.ny.expand.grid <- function( dta, nx = 2, ny = 2, FUN = mean, ... ) { ilon <- seq( 1, ncol( dta ), nx ) ilat <- seq( 1, nrow( dta ), ny ) cells <- as.matrix( expand.grid( ilat, ilon ) ) blocks <- apply( cells , 1 , function( x ) dta[ x[ 1 ]:( x[ 1 ] + 1 ), x[ 2 ]:( x[ 2 ] + 1 ) ] ) block.means <- colMeans( blocks ) matrix( block.means , nrow( dta ) / ny , ncol( dta ) / nx ) } aggregate.nx.ny.array.apply <- function( dta, nx = 2, ny = 2, FUN = mean, ... ) { a <- array( dta , dim = c( ny , nrow( dta ) %/% ny , nx , ncol( dta ) %/% nx ) ) apply( a, c( 2, 4 ), FUN, ... ) } aggregate.nx.ny.array.aperm.mean <- function( dta, nx = 2, ny = 2, ... ) { # number of rows in result nnr <- nrow( dta ) %/% ny # number of columns in result nnc <- ncol( dta ) %/% nx # number of values to take mean of nxny <- nx * ny # describe existing layout of values in dta as 4-d array a1 <- array( dta, dim = c( ny, nnr, nx, nnc ) ) # swap data in dimensions 2 and 3 a2 <- aperm( a1, c( 1, 3, 2, 4 ) ) # treat first two dimensions as column vectors, remaining as columns a3 <- matrix( a2, nrow = nxny ) # fast calculation of column means v <- colMeans( a3, ... ) # reframe result vector as a matrix matrix( v, ncol = nnc ) } aggregate.nx.ny.array.aperm.apply <- function( dta, nx = 2, ny = 2, FUN = mean, ... ) { # number of rows in result nnr <- nrow( dta ) %/% ny # number of columns in result nnc <- ncol( dta ) %/% nx # number of values to apply FUN to nxny <- nx * ny # describe existing layout of values in dta as 4-d array a1 <- array( dta, dim = c( ny, nnr, nx, nnc ) ) # swap data in dimensions 2 and 3 a2 <- aperm( a1, c( 1, 3, 2, 4 ) ) # treat first two dimensions as column vectors, remaining as columns a3 <- matrix( a2, nrow = nxny ) # apply FUN to column vectors v <- apply( a3, 2, FUN = FUN, ... ) matrix( v, ncol = nnc ) } test1 <- aggregate.nx.ny.expand.grid( tst ) test2 <- aggregate.nx.ny.array.apply( tst ) test3 <- aggregate.nx.ny.array.aperm.mean( tst ) test4 <- aggregate.nx.ny.array.aperm.apply( tst ) library(microbenchmark) microbenchmark( aggregate.nx.ny.expand.grid( tst, 2, 2, mean, na.rm = TRUE ) , aggregate.nx.ny.array.apply( tst, 2, 2, mean, na.rm = TRUE ) , aggregate.nx.ny.array.aperm.mean( tst, 2, 2, na.rm = TRUE ) , aggregate.nx.ny.array.aperm.apply( tst, 2, 2, mean, na.rm = TRUE ) ) #Unit: milliseconds # expr min # aggregate.nx.ny.expand.grid(tst, 2, 2, mean, na.rm = TRUE) 628.528322 # aggregate.nx.ny.array.apply(tst, 2, 2, mean, na.rm = TRUE) 846.883314 # aggregate.nx.ny.array.aperm.mean(tst, 2, 2, na.rm = TRUE) 8.904369 # aggregate.nx.ny.array.aperm.apply(tst, 2, 2, mean, na.rm = TRUE) 619.691851 # lq mean median uq max neval cld # 675.470967 916.39630 778.54090 873.9754 2452.695 100 b # 920.831966 1126.94691 1000.33830 1094.9233 3412.639 100 c # 9.191747 21.98528 10.30099 15.9169 158.687 100 a # 733.246331 936.73359 757.58383 844.2016 2824.557 100 b On Sat, 30 Jul 2016, Jeff Newmiller wrote:> For the record, the array.apply code can be fixed as below, but then it is slower than the expand.grid version. > > aggregate.nx.ny.array.apply <- function(dta,nx=2,ny=2, FUN=mean,...) > { > a <- array(dta, dim = c(ny, nrow( dta ) %/% ny, nx, ncol( dta ) %/% nx)) > apply( a, c(2, 4), FUN, ... ) > } > > -- > Sent from my phone. Please excuse my brevity. > > On July 30, 2016 11:06:16 AM PDT, "Anthoni, Peter (IMK)" <peter.anthoni at kit.edu> wrote: >> Hi all, >> >> thanks for the suggestions, I did some timing tests, see below. >> Unfortunately the aggregate.nx.ny.array.apply, does not produce the >> expected result. >> So the fastest seems to be the aggregate.nx.ny.expand.grid, though the >> double for loop is not that much slower. >> >> many thanks >> Peter >> >>> tst=matrix(1:(1440*360),ncol=1440,nrow=360) >>> system.time( {for(i in 1:10) >> tst_2x2=aggregate.nx.ny.forloop(tst,2,2,mean,na.rm=T)}) >> user system elapsed >> 11.227 0.073 11.371 >>> system.time( {for(i in 1:10) >> tst_2x2=aggregate.nx.ny.interaction(tst,2,2,mean,na.rm=T)}) >> user system elapsed >> 26.354 0.475 26.880 >>> system.time( {for(i in 1:10) >> tst_2x2=aggregate.nx.ny.expand.grid(tst,2,2,mean,na.rm=T)}) >> user system elapsed >> 9.683 0.055 9.763 >>> system.time( {for(i in 1:10) >> tst_2x2=aggregate.nx.ny.array.apply(tst,2,2,mean,na.rm=T)}) >> user system elapsed >> 7.693 0.055 7.800 >> >>> tst.small=matrix(1:(8*4),ncol=8,nrow=4) >>> aggregate.nx.ny.forloop = function(data,nx=2,ny=2, FUN=mean,...) >> + { >> + nlon=nrow(data) >> + nlat=ncol(data) >> + newdata=matrix(NA,nrow=nlon/nx,ncol=nlat/ny) >> + dim(newdata) >> + for(ilon in seq(1,nlon,nx)) { >> + for(ilat in seq(1,nlat,ny)) { >> + ilon_new=1+(ilon-1)/nx >> + ilat_new=1+(ilat-1)/ny >> + newdata[ilon_new,ilat_new] = FUN(data[ilon+0:1,ilat+0:1],...) >> + } >> + } >> + newdata >> + } >>> aggregate.nx.ny.forloop(tst.small) >> [,1] [,2] [,3] [,4] >> [1,] 3.5 11.5 19.5 27.5 >> [2,] 5.5 13.5 21.5 29.5 >>> >>> aggregate.nx.ny.interaction = function(data,nx=2,ny=2, FUN=mean,...) >> + { >> + >> + nlon=nrow(data) >> + nlat=ncol(data) >> + newdata=matrix(NA,nrow=nlon/nx,ncol=nlat/ny) >> + newdata[] <- tapply( data, interaction( (row(data)+1) %/% 2, >> (col(data)+1) %/% 2 ), FUN, ...) >> + newdata >> + } >>> aggregate.nx.ny.interaction(tst.small) >> [,1] [,2] [,3] [,4] >> [1,] 3.5 11.5 19.5 27.5 >> [2,] 5.5 13.5 21.5 29.5 >>> >>> aggregate.nx.ny.expand.grid = function(data,nx=2,ny=2, FUN=mean,...) >> + { >> + ilon <- seq(1,ncol(data),nx) >> + ilat <- seq(1,nrow(data),ny) >> + cells <- as.matrix(expand.grid(ilat, ilon)) >> + blocks <- apply(cells, 1, function(x) >> data[x[1]:(x[1]+1),x[2]:(x[2]+1)]) >> + block.means <- colMeans(blocks) >> + matrix(block.means, nrow(data)/ny, ncol(data)/nx) >> + } >>> aggregate.nx.ny.expand.grid(tst.small) >> [,1] [,2] [,3] [,4] >> [1,] 3.5 11.5 19.5 27.5 >> [2,] 5.5 13.5 21.5 29.5 >>> >>> aggregate.nx.ny.array.apply = function(data,nx=2,ny=2, FUN=mean,...) >> { >> + a <- array(data, dim = c(ny, nrow( data ) %/% ny, ncol( data ) %/% >> nx)) >> + apply( a, c(2, 3), FUN, ... ) >> + } >>> aggregate.nx.ny.array.apply(tst.small) >> [,1] [,2] [,3] [,4] >> [1,] 1.5 5.5 9.5 13.5 >> [2,] 3.5 7.5 11.5 15.5 >> >> >> >>> On 28 Jul 2016, at 00:26, David Winsemius <dwinsemius at comcast.net> >> wrote: >>> >>> >>>> On Jul 27, 2016, at 12:02 PM, Jeff Newmiller >> <jdnewmil at dcn.davis.ca.us> wrote: >>>> >>>> An alternative (more compact, not necessarily faster, because apply >> is still a for loop inside): >>>> >>>> f <- function( m, nx, ny ) { >>>> # redefine the dimensions of my >>>> a <- array( m >>>> , dim = c( ny >>>> , nrow( m ) %/% ny >>>> , ncol( m ) %/% nx ) >>>> ) >>>> # apply mean over dim 1 >>>> apply( a, c( 2, 3 ), FUN=mean ) >>>> } >>>> f( tst, nx, ny ) >>> >>> Here's an apparently loopless strategy, although I suspect the code >> for interaction (and maybe tapply as well?) uses a loop. >>> >>> >>> tst_2X2 <- matrix(NA, ,ncol=4,nrow=2) >>> >>> tst_2x2[] <- tapply( tst, interaction( (row(tst)+1) %/% 2, >> (col(tst)+1) %/% 2 ), mean) >>> >>> tst_2x2 >>> >>> [,1] [,2] [,3] [,4] >>> [1,] 3.5 11.5 19.5 27.5 >>> [2,] 5.5 13.5 21.5 29.5 >>> >>> -- >>> David. >>> >>> >>>> >>>> -- >>>> Sent from my phone. Please excuse my brevity. >>>> >>>> On July 27, 2016 9:08:32 AM PDT, David L Carlson <dcarlson at tamu.edu> >> wrote: >>>>> This should be faster. It uses apply() across the blocks. >>>>> >>>>>> ilon <- seq(1,8,nx) >>>>>> ilat <- seq(1,4,ny) >>>>>> cells <- as.matrix(expand.grid(ilat, ilon)) >>>>>> blocks <- apply(cells, 1, function(x) tst[x[1]:(x[1]+1), >>>>> x[2]:(x[2]+1)]) >>>>>> block.means <- colMeans(blocks) >>>>>> tst_2x2 <- matrix(block.means, 2, 4) >>>>>> tst_2x2 >>>>> [,1] [,2] [,3] [,4] >>>>> [1,] 3.5 11.5 19.5 27.5 >>>>> [2,] 5.5 13.5 21.5 29.5 >>>>> >>>>> ------------------------------------- >>>>> David L Carlson >>>>> Department of Anthropology >>>>> Texas A&M University >>>>> College Station, TX 77840-4352 >>>>> >>>>> >>>>> >>>>> -----Original Message----- >>>>> From: R-help [mailto:r-help-bounces at r-poject.org] On Behalf Of >> Anthoni, >>>>> Peter (IMK) >>>>> Sent: Wednesday, July 27, 2016 6:14 AM >>>>> To: r-help at r-project.org >>>>> Subject: [R] Aggregate matrix in a 2 by 2 manor >>>>> >>>>> Hi all, >>>>> >>>>> I need to aggregate some matrix data (1440x720) to a lower >> dimension >>>>> (720x360) for lots of years and variables >>>>> >>>>> I can do double for loop, but that will be slow. Anybody know a >> quicker >>>>> way? >>>>> >>>>> here an example with a smaller matrix size: >>>>> >>>>> tst=matrix(1:(8*4),ncol=8,nrow=4) >>>>> tst_2x2=matrix(NA,ncol=4,nrow=2) >>>>> nx=2 >>>>> ny=2 >>>>> for(ilon in seq(1,8,nx)) { >>>>> for (ilat in seq(1,4,ny)) { >>>>> ilon_2x2=1+(ilon-1)/nx >>>>> ilat_2x2=1+(ilat-1)/ny >>>>> tst_2x2[ilat_2x2,ilon_2x2] = mean(tst[ilat+0:1,ilon+0:1]) >>>>> } >>>>> } >>>>> >>>>> tst >>>>> tst_2x2 >>>>> >>>>>> tst >>>>> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] >>>>> [1,] 1 5 9 13 17 21 25 29 >>>>> [2,] 2 6 10 14 18 22 26 30 >>>>> [3,] 3 7 11 15 19 23 27 31 >>>>> [4,] 4 8 12 16 20 24 28 32 >>>>> >>>>>> tst_2x2 >>>>> [,1] [,2] [,3] [,4] >>>>> [1,] 3.5 11.5 19.5 27.5 >>>>> [2,] 5.5 13.5 21.5 29.5 >>>>> >>>>> >>>>> I though a cast to 3d-array might do the trick and apply over the >> new >>>>> dimension, but that does not work, since it casts the data along >> the >>>>> row. >>>>>> matrix(apply(array(tst,dim=c(nx,ny,8)),3,mean),nrow=nrow(tst)/ny) >>>>> [,1] [,2] [,3] [,4] >>>>> [1,] 2.5 10.5 18.5 26.5 >>>>> [2,] 6.5 14.5 22.5 30.5 >>>>> >>>>> >>>>> cheers >>>>> Peter >>>>> >>>>> ______________________________________________ >>>>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>>>> https://stat.ethz.ch/mailman/listinfo/r-help >>>>> PLEASE do read the posting guide >>>>> http://www.R-project.org/posting-guide.html >>>>> and provide commented, minimal, self-contained, reproducible code. >>>>> >>>>> ______________________________________________ >>>>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>>>> https://stat.ethz.ch/mailman/listinfo/r-help >>>>> PLEASE do read the posting guide >>>>> http://www.R-project.org/posting-guide.html >>>>> and provide commented, minimal, self-contained, reproducible code. >>>> >>>> ______________________________________________ >>>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>>> https://stat.ethz.ch/mailman/listinfo/r-help >>>> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >>>> and provide commented, minimal, self-contained, reproducible code. >>> >>> David Winsemius >>> Alameda, CA, USA >>> > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >--------------------------------------------------------------------------- Jeff Newmiller The ..... ..... Go Live... DCN:<jdnewmil at dcn.davis.ca.us> Basics: ##.#. ##.#. Live Go... Live: OO#.. Dead: OO#.. Playing Research Engineer (Solar/Batteries O.O#. #.O#. with /Software/Embedded Controllers) .OO#. .OO#. rocks...1k