An alternative (more compact, not necessarily faster, because apply is still a for loop inside): f <- function( m, nx, ny ) { # redefine the dimensions of my a <- array( m , dim = c( ny , nrow( m ) %/% ny , ncol( m ) %/% nx ) ) # apply mean over dim 1 apply( a, c( 2, 3 ), FUN=mean ) } f( tst, nx, ny ) -- Sent from my phone. Please excuse my brevity. On July 27, 2016 9:08:32 AM PDT, David L Carlson <dcarlson at tamu.edu> wrote:>This should be faster. It uses apply() across the blocks. > >> ilon <- seq(1,8,nx) >> ilat <- seq(1,4,ny) >> cells <- as.matrix(expand.grid(ilat, ilon)) >> blocks <- apply(cells, 1, function(x) tst[x[1]:(x[1]+1), >x[2]:(x[2]+1)]) >> block.means <- colMeans(blocks) >> tst_2x2 <- matrix(block.means, 2, 4) >> tst_2x2 > [,1] [,2] [,3] [,4] >[1,] 3.5 11.5 19.5 27.5 >[2,] 5.5 13.5 21.5 29.5 > >------------------------------------- >David L Carlson >Department of Anthropology >Texas A&M University >College Station, TX 77840-4352 > > > >-----Original Message----- >From: R-help [mailto:r-help-bounces at r-poject.org] On Behalf Of Anthoni, >Peter (IMK) >Sent: Wednesday, July 27, 2016 6:14 AM >To: r-help at r-project.org >Subject: [R] Aggregate matrix in a 2 by 2 manor > >Hi all, > >I need to aggregate some matrix data (1440x720) to a lower dimension >(720x360) for lots of years and variables > >I can do double for loop, but that will be slow. Anybody know a quicker >way? > >here an example with a smaller matrix size: > >tst=matrix(1:(8*4),ncol=8,nrow=4) >tst_2x2=matrix(NA,ncol=4,nrow=2) >nx=2 >ny=2 >for(ilon in seq(1,8,nx)) { > for (ilat in seq(1,4,ny)) { > ilon_2x2=1+(ilon-1)/nx > ilat_2x2=1+(ilat-1)/ny > tst_2x2[ilat_2x2,ilon_2x2] = mean(tst[ilat+0:1,ilon+0:1]) > } >} > >tst >tst_2x2 > >> tst > [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] >[1,] 1 5 9 13 17 21 25 29 >[2,] 2 6 10 14 18 22 26 30 >[3,] 3 7 11 15 19 23 27 31 >[4,] 4 8 12 16 20 24 28 32 > >> tst_2x2 > [,1] [,2] [,3] [,4] >[1,] 3.5 11.5 19.5 27.5 >[2,] 5.5 13.5 21.5 29.5 > > >I though a cast to 3d-array might do the trick and apply over the new >dimension, but that does not work, since it casts the data along the >row. >> matrix(apply(array(tst,dim=c(nx,ny,8)),3,mean),nrow=nrow(tst)/ny) > [,1] [,2] [,3] [,4] >[1,] 2.5 10.5 18.5 26.5 >[2,] 6.5 14.5 22.5 30.5 > > >cheers >Peter > >______________________________________________ >R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >https://stat.ethz.ch/mailman/listinfo/r-help >PLEASE do read the posting guide >http://www.R-project.org/posting-guide.html >and provide commented, minimal, self-contained, reproducible code. > >______________________________________________ >R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >https://stat.ethz.ch/mailman/listinfo/r-help >PLEASE do read the posting guide >http://www.R-project.org/posting-guide.html >and provide commented, minimal, self-contained, reproducible code.
> On Jul 27, 2016, at 12:02 PM, Jeff Newmiller <jdnewmil at dcn.davis.ca.us> wrote: > > An alternative (more compact, not necessarily faster, because apply is still a for loop inside): > > f <- function( m, nx, ny ) { > # redefine the dimensions of my > a <- array( m > , dim = c( ny > , nrow( m ) %/% ny > , ncol( m ) %/% nx ) > ) > # apply mean over dim 1 > apply( a, c( 2, 3 ), FUN=mean ) > } > f( tst, nx, ny )Here's an apparently loopless strategy, although I suspect the code for interaction (and maybe tapply as well?) uses a loop. tst_2X2 <- matrix(NA, ,ncol=4,nrow=2) tst_2x2[] <- tapply( tst, interaction( (row(tst)+1) %/% 2, (col(tst)+1) %/% 2 ), mean) tst_2x2 [,1] [,2] [,3] [,4] [1,] 3.5 11.5 19.5 27.5 [2,] 5.5 13.5 21.5 29.5 -- David.> > -- > Sent from my phone. Please excuse my brevity. > > On July 27, 2016 9:08:32 AM PDT, David L Carlson <dcarlson at tamu.edu> wrote: >> This should be faster. It uses apply() across the blocks. >> >>> ilon <- seq(1,8,nx) >>> ilat <- seq(1,4,ny) >>> cells <- as.matrix(expand.grid(ilat, ilon)) >>> blocks <- apply(cells, 1, function(x) tst[x[1]:(x[1]+1), >> x[2]:(x[2]+1)]) >>> block.means <- colMeans(blocks) >>> tst_2x2 <- matrix(block.means, 2, 4) >>> tst_2x2 >> [,1] [,2] [,3] [,4] >> [1,] 3.5 11.5 19.5 27.5 >> [2,] 5.5 13.5 21.5 29.5 >> >> ------------------------------------- >> David L Carlson >> Department of Anthropology >> Texas A&M University >> College Station, TX 77840-4352 >> >> >> >> -----Original Message----- >> From: R-help [mailto:r-help-bounces at r-poject.org] On Behalf Of Anthoni, >> Peter (IMK) >> Sent: Wednesday, July 27, 2016 6:14 AM >> To: r-help at r-project.org >> Subject: [R] Aggregate matrix in a 2 by 2 manor >> >> Hi all, >> >> I need to aggregate some matrix data (1440x720) to a lower dimension >> (720x360) for lots of years and variables >> >> I can do double for loop, but that will be slow. Anybody know a quicker >> way? >> >> here an example with a smaller matrix size: >> >> tst=matrix(1:(8*4),ncol=8,nrow=4) >> tst_2x2=matrix(NA,ncol=4,nrow=2) >> nx=2 >> ny=2 >> for(ilon in seq(1,8,nx)) { >> for (ilat in seq(1,4,ny)) { >> ilon_2x2=1+(ilon-1)/nx >> ilat_2x2=1+(ilat-1)/ny >> tst_2x2[ilat_2x2,ilon_2x2] = mean(tst[ilat+0:1,ilon+0:1]) >> } >> } >> >> tst >> tst_2x2 >> >>> tst >> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] >> [1,] 1 5 9 13 17 21 25 29 >> [2,] 2 6 10 14 18 22 26 30 >> [3,] 3 7 11 15 19 23 27 31 >> [4,] 4 8 12 16 20 24 28 32 >> >>> tst_2x2 >> [,1] [,2] [,3] [,4] >> [1,] 3.5 11.5 19.5 27.5 >> [2,] 5.5 13.5 21.5 29.5 >> >> >> I though a cast to 3d-array might do the trick and apply over the new >> dimension, but that does not work, since it casts the data along the >> row. >>> matrix(apply(array(tst,dim=c(nx,ny,8)),3,mean),nrow=nrow(tst)/ny) >> [,1] [,2] [,3] [,4] >> [1,] 2.5 10.5 18.5 26.5 >> [2,] 6.5 14.5 22.5 30.5 >> >> >> cheers >> Peter >> >> ______________________________________________ >> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. >> >> ______________________________________________ >> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code.David Winsemius Alameda, CA, USA
Hi all, thanks for the suggestions, I did some timing tests, see below. Unfortunately the aggregate.nx.ny.array.apply, does not produce the expected result. So the fastest seems to be the aggregate.nx.ny.expand.grid, though the double for loop is not that much slower. many thanks Peter> tst=matrix(1:(1440*360),ncol=1440,nrow=360) > system.time( {for(i in 1:10) tst_2x2=aggregate.nx.ny.forloop(tst,2,2,mean,na.rm=T)})user system elapsed 11.227 0.073 11.371> system.time( {for(i in 1:10) tst_2x2=aggregate.nx.ny.interaction(tst,2,2,mean,na.rm=T)})user system elapsed 26.354 0.475 26.880> system.time( {for(i in 1:10) tst_2x2=aggregate.nx.ny.expand.grid(tst,2,2,mean,na.rm=T)})user system elapsed 9.683 0.055 9.763> system.time( {for(i in 1:10) tst_2x2=aggregate.nx.ny.array.apply(tst,2,2,mean,na.rm=T)})user system elapsed 7.693 0.055 7.800> tst.small=matrix(1:(8*4),ncol=8,nrow=4) > aggregate.nx.ny.forloop = function(data,nx=2,ny=2, FUN=mean,...)+ { + nlon=nrow(data) + nlat=ncol(data) + newdata=matrix(NA,nrow=nlon/nx,ncol=nlat/ny) + dim(newdata) + for(ilon in seq(1,nlon,nx)) { + for(ilat in seq(1,nlat,ny)) { + ilon_new=1+(ilon-1)/nx + ilat_new=1+(ilat-1)/ny + newdata[ilon_new,ilat_new] = FUN(data[ilon+0:1,ilat+0:1],...) + } + } + newdata + }> aggregate.nx.ny.forloop(tst.small)[,1] [,2] [,3] [,4] [1,] 3.5 11.5 19.5 27.5 [2,] 5.5 13.5 21.5 29.5> > aggregate.nx.ny.interaction = function(data,nx=2,ny=2, FUN=mean,...)+ { + + nlon=nrow(data) + nlat=ncol(data) + newdata=matrix(NA,nrow=nlon/nx,ncol=nlat/ny) + newdata[] <- tapply( data, interaction( (row(data)+1) %/% 2, (col(data)+1) %/% 2 ), FUN, ...) + newdata + }> aggregate.nx.ny.interaction(tst.small)[,1] [,2] [,3] [,4] [1,] 3.5 11.5 19.5 27.5 [2,] 5.5 13.5 21.5 29.5> > aggregate.nx.ny.expand.grid = function(data,nx=2,ny=2, FUN=mean,...)+ { + ilon <- seq(1,ncol(data),nx) + ilat <- seq(1,nrow(data),ny) + cells <- as.matrix(expand.grid(ilat, ilon)) + blocks <- apply(cells, 1, function(x) data[x[1]:(x[1]+1),x[2]:(x[2]+1)]) + block.means <- colMeans(blocks) + matrix(block.means, nrow(data)/ny, ncol(data)/nx) + }> aggregate.nx.ny.expand.grid(tst.small)[,1] [,2] [,3] [,4] [1,] 3.5 11.5 19.5 27.5 [2,] 5.5 13.5 21.5 29.5> > aggregate.nx.ny.array.apply = function(data,nx=2,ny=2, FUN=mean,...) {+ a <- array(data, dim = c(ny, nrow( data ) %/% ny, ncol( data ) %/% nx)) + apply( a, c(2, 3), FUN, ... ) + }> aggregate.nx.ny.array.apply(tst.small)[,1] [,2] [,3] [,4] [1,] 1.5 5.5 9.5 13.5 [2,] 3.5 7.5 11.5 15.5> On 28 Jul 2016, at 00:26, David Winsemius <dwinsemius at comcast.net> wrote: > > >> On Jul 27, 2016, at 12:02 PM, Jeff Newmiller <jdnewmil at dcn.davis.ca.us> wrote: >> >> An alternative (more compact, not necessarily faster, because apply is still a for loop inside): >> >> f <- function( m, nx, ny ) { >> # redefine the dimensions of my >> a <- array( m >> , dim = c( ny >> , nrow( m ) %/% ny >> , ncol( m ) %/% nx ) >> ) >> # apply mean over dim 1 >> apply( a, c( 2, 3 ), FUN=mean ) >> } >> f( tst, nx, ny ) > > Here's an apparently loopless strategy, although I suspect the code for interaction (and maybe tapply as well?) uses a loop. > > > tst_2X2 <- matrix(NA, ,ncol=4,nrow=2) > > tst_2x2[] <- tapply( tst, interaction( (row(tst)+1) %/% 2, (col(tst)+1) %/% 2 ), mean) > > tst_2x2 > > [,1] [,2] [,3] [,4] > [1,] 3.5 11.5 19.5 27.5 > [2,] 5.5 13.5 21.5 29.5 > > -- > David. > > >> >> -- >> Sent from my phone. Please excuse my brevity. >> >> On July 27, 2016 9:08:32 AM PDT, David L Carlson <dcarlson at tamu.edu> wrote: >>> This should be faster. It uses apply() across the blocks. >>> >>>> ilon <- seq(1,8,nx) >>>> ilat <- seq(1,4,ny) >>>> cells <- as.matrix(expand.grid(ilat, ilon)) >>>> blocks <- apply(cells, 1, function(x) tst[x[1]:(x[1]+1), >>> x[2]:(x[2]+1)]) >>>> block.means <- colMeans(blocks) >>>> tst_2x2 <- matrix(block.means, 2, 4) >>>> tst_2x2 >>> [,1] [,2] [,3] [,4] >>> [1,] 3.5 11.5 19.5 27.5 >>> [2,] 5.5 13.5 21.5 29.5 >>> >>> ------------------------------------- >>> David L Carlson >>> Department of Anthropology >>> Texas A&M University >>> College Station, TX 77840-4352 >>> >>> >>> >>> -----Original Message----- >>> From: R-help [mailto:r-help-bounces at r-poject.org] On Behalf Of Anthoni, >>> Peter (IMK) >>> Sent: Wednesday, July 27, 2016 6:14 AM >>> To: r-help at r-project.org >>> Subject: [R] Aggregate matrix in a 2 by 2 manor >>> >>> Hi all, >>> >>> I need to aggregate some matrix data (1440x720) to a lower dimension >>> (720x360) for lots of years and variables >>> >>> I can do double for loop, but that will be slow. Anybody know a quicker >>> way? >>> >>> here an example with a smaller matrix size: >>> >>> tst=matrix(1:(8*4),ncol=8,nrow=4) >>> tst_2x2=matrix(NA,ncol=4,nrow=2) >>> nx=2 >>> ny=2 >>> for(ilon in seq(1,8,nx)) { >>> for (ilat in seq(1,4,ny)) { >>> ilon_2x2=1+(ilon-1)/nx >>> ilat_2x2=1+(ilat-1)/ny >>> tst_2x2[ilat_2x2,ilon_2x2] = mean(tst[ilat+0:1,ilon+0:1]) >>> } >>> } >>> >>> tst >>> tst_2x2 >>> >>>> tst >>> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] >>> [1,] 1 5 9 13 17 21 25 29 >>> [2,] 2 6 10 14 18 22 26 30 >>> [3,] 3 7 11 15 19 23 27 31 >>> [4,] 4 8 12 16 20 24 28 32 >>> >>>> tst_2x2 >>> [,1] [,2] [,3] [,4] >>> [1,] 3.5 11.5 19.5 27.5 >>> [2,] 5.5 13.5 21.5 29.5 >>> >>> >>> I though a cast to 3d-array might do the trick and apply over the new >>> dimension, but that does not work, since it casts the data along the >>> row. >>>> matrix(apply(array(tst,dim=c(nx,ny,8)),3,mean),nrow=nrow(tst)/ny) >>> [,1] [,2] [,3] [,4] >>> [1,] 2.5 10.5 18.5 26.5 >>> [2,] 6.5 14.5 22.5 30.5 >>> >>> >>> cheers >>> Peter >>> >>> ______________________________________________ >>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>> https://stat.ethz.ch/mailman/listinfo/r-help >>> PLEASE do read the posting guide >>> http://www.R-project.org/posting-guide.html >>> and provide commented, minimal, self-contained, reproducible code. >>> >>> ______________________________________________ >>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>> https://stat.ethz.ch/mailman/listinfo/r-help >>> PLEASE do read the posting guide >>> http://www.R-project.org/posting-guide.html >>> and provide commented, minimal, self-contained, reproducible code. >> >> ______________________________________________ >> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. > > David Winsemius > Alameda, CA, USA >