Here is an example of using dplyr. Please provide a reasonable subset of data. Your was all for the same date. Use 'dput' to put in your email.> x <- read.table(text = " X.YY MM DD hh WDI R.WSP D.GST PRES ATMPDEWP + 2015 1 1 0 328 3.6 4.5 1028.0 3.8 -3.5 + 2015 1 1 1 300 2.1 2.7 1027.9 3.7 -4.4 + 2015 1 1 2 264 2.4 2.9 1027.7 3.6 -4.5 + 2015 1 1 3 230 4.1 4.5 1027.4 4.2 -3.8 + 2015 1 1 4 242 8.1 9.2 1026.6 4.4 -3.1 + 2015 1 1 5 262 9.3 10.1 1026.6 4.1 -3.8 + 2015 1 1 6 267 8.6 9.6 1026.3 4.2 -3.8 + 2015 1 1 7 264 9.3 9.9 1026.1 3.9 -2.8 + 2015 1 1 8 268 8.2 9.1 1026.1 3.5 -3.0 + 2015 1 1 9 272 8.8 9.6 1025.4 3.2 -3.3 + 2015 2 1 0 328 3.6 4.5 1028.0 3.8 -3.5 + 2015 2 1 1 300 2.1 2.7 1027.9 3.7 -4.4 + 2015 2 1 2 264 2.4 2.9 1027.7 3.6 -4.5 + 2015 2 1 3 230 4.1 4.5 1027.4 4.2 -3.8 + 2015 2 1 4 242 8.1 9.2 1026.6 4.4 -3.1 + 2015 2 1 5 262 9.3 10.1 1026.6 4.1 -3.8 + 2015 2 1 6 267 8.6 9.6 1026.3 4.2 -3.8 + 2015 2 1 7 264 9.3 9.9 1026.1 3.9 -2.8 + 2015 2 1 8 268 8.2 9.1 1026.1 3.5 -3.0 + 2015 2 1 9 272 8.8 9.6 1025.4 3.2 -3.3 + 2015 3 1 0 328 3.6 4.5 1028.0 3.8 -3.5 + 2015 3 1 1 300 2.1 2.7 1027.9 3.7 -4.4 + 2015 3 1 2 264 2.4 2.9 1027.7 3.6 -4.5 + 2015 3 1 3 230 4.1 4.5 1027.4 4.2 -3.8 + 2015 3 1 4 242 8.1 9.2 1026.6 4.4 -3.1 + 2015 3 1 5 262 9.3 10.1 1026.6 4.1 -3.8 + 2015 3 1 6 267 8.6 9.6 1026.3 4.2 -3.8 + 2015 3 1 7 264 9.3 9.9 1026.1 3.9 -2.8 + 2015 3 1 8 268 8.2 9.1 1026.1 3.5 -3.0 + 2015 3 1 9 272 8.8 9.6 1025.4 3.2 -3.3 + ", + header = TRUE, + as.is = TRUE)> > library(dplyr) > by_year <- x %>%+ group_by(X.YY) %>% + summarise_each(funs(mean))> > by_ym <- x %>%+ group_by(X.YY, MM ) %>% + summarise_each(funs(mean))> > by_ymd <- x %>%+ group_by(X.YY, MM, DD) %>% + summarise_each(funs(mean))> > by_yearSource: local data frame [1 x 10] X.YY MM DD hh WDI R.WSP D.GST PRES ATMP DEWP <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 2015 2 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6> by_ymSource: local data frame [3 x 10] Groups: X.YY [?] X.YY MM DD hh WDI R.WSP D.GST PRES ATMP DEWP <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 2015 1 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 2 2015 2 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 3 2015 3 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6> by_ymdSource: local data frame [3 x 10] Groups: X.YY, MM [?] X.YY MM DD hh WDI R.WSP D.GST PRES ATMP DEWP <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 2015 1 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 2 2015 2 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 3 2015 3 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6>Jim Holtman Data Munger Guru What is the problem that you are trying to solve? Tell me what you want to do, not how you want to do it. On Sun, Jul 17, 2016 at 5:42 PM, Jianling Fan <fanjianling at gmail.com> wrote:> Hello Tom, > > try aggregate() or cast(). Both works.I prefer the latter. > > > library(reshape) > desc<-melt(mydata, measure.vars=c("WDI","R.WSP", "D.GST", "PRES", > "ATMP", "DEWP"), > id.vars=c("X.YY","MM","DD")) > summary<-cast(desc, X.YY+MM+DD~variable, mean) > > > > > > > > > > On 17 July 2016 at 06:22, Tom Mosca <tom at vims.edu> wrote: > > Hello Good Folk, > > > > My dataframe looks like this: > >> mydata > > X.YY MM DD hh WDI R.WSP D.GST PRES ATMP DEWP > > 1 2015 1 1 0 328 3.6 4.5 1028.0 3.8 -3.5 > > 2 2015 1 1 1 300 2.1 2.7 1027.9 3.7 -4.4 > > 3 2015 1 1 2 264 2.4 2.9 1027.7 3.6 -4.5 > > 4 2015 1 1 3 230 4.1 4.5 1027.4 4.2 -3.8 > > 5 2015 1 1 4 242 8.1 9.2 1026.6 4.4 -3.1 > > 6 2015 1 1 5 262 9.3 10.1 1026.6 4.1 -3.8 > > 7 2015 1 1 6 267 8.6 9.6 1026.3 4.2 -3.8 > > 8 2015 1 1 7 264 9.3 9.9 1026.1 3.9 -2.8 > > 9 2015 1 1 8 268 8.2 9.1 1026.1 3.5 -3.0 > > 10 2015 1 1 9 272 8.8 9.6 1025.4 3.2 -3.3 ? > > > > The first four columns are year, month, day, hour (0 ? 23). I wish to > take the means of the next six columns (WDIR, WSPD, GST, PRES, ATMP and > DEWP) by year, month and day. That is, I want daily averages. > > > > Please help. Thank you. > > > > Tom > > > > [[alternative HTML version deleted]] > > > > > > ______________________________________________ > > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > > > -- > Jianling Fan > ??? > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code.[[alternative HTML version deleted]]
Dear Jim, I'm very inexperienced with R. I'm sorry I failed to recognize the flaw in my example. I just clipped the first few lines of data, and should have realized that they were for the first few hours of a single day. My first problem was to take the means by day. As all the data come from a single year, I accomplished the goal by using:> datATMP<-aggregate(mydata, by=mydata[c("MM","DD")], FUN=mean)My second problem was to sort the results by month, for which I used:> attach(datATMP) > datATMP1 <- datATMP[order(MM),] > datATMP1 > detach(datATMP)I have read that I should avoid using attach(), and should use with() instead. However, I have not yet figured out how to do this with with(). I'm only running short segments of code, and think I'll be alright with attach() for the time being, but do want to develop better form. So, I'll keep working on it. Thank you for your kind response and examples. I will study them. Sincerely, Tom ________________________________ From: jim holtman [jholtman at gmail.com] Sent: Sunday, July 17, 2016 7:14 PM To: Jianling Fan Cc: Tom Mosca; r-help at r-project.org Subject: Re: [R] means by year, month and day Here is an example of using dplyr. Please provide a reasonable subset of data. Your was all for the same date. Use 'dput' to put in your email.> x <- read.table(text = " X.YY MM DD hh WDI R.WSP D.GST PRES ATMP DEWP+ 2015 1 1 0 328 3.6 4.5 1028.0 3.8 -3.5 + 2015 1 1 1 300 2.1 2.7 1027.9 3.7 -4.4 + 2015 1 1 2 264 2.4 2.9 1027.7 3.6 -4.5 + 2015 1 1 3 230 4.1 4.5 1027.4 4.2 -3.8 + 2015 1 1 4 242 8.1 9.2 1026.6 4.4 -3.1 + 2015 1 1 5 262 9.3 10.1 1026.6 4.1 -3.8 + 2015 1 1 6 267 8.6 9.6 1026.3 4.2 -3.8 + 2015 1 1 7 264 9.3 9.9 1026.1 3.9 -2.8 + 2015 1 1 8 268 8.2 9.1 1026.1 3.5 -3.0 + 2015 1 1 9 272 8.8 9.6 1025.4 3.2 -3.3 + 2015 2 1 0 328 3.6 4.5 1028.0 3.8 -3.5 + 2015 2 1 1 300 2.1 2.7 1027.9 3.7 -4.4 + 2015 2 1 2 264 2.4 2.9 1027.7 3.6 -4.5 + 2015 2 1 3 230 4.1 4.5 1027.4 4.2 -3.8 + 2015 2 1 4 242 8.1 9.2 1026.6 4.4 -3.1 + 2015 2 1 5 262 9.3 10.1 1026.6 4.1 -3.8 + 2015 2 1 6 267 8.6 9.6 1026.3 4.2 -3.8 + 2015 2 1 7 264 9.3 9.9 1026.1 3.9 -2.8 + 2015 2 1 8 268 8.2 9.1 1026.1 3.5 -3.0 + 2015 2 1 9 272 8.8 9.6 1025.4 3.2 -3.3 + 2015 3 1 0 328 3.6 4.5 1028.0 3.8 -3.5 + 2015 3 1 1 300 2.1 2.7 1027.9 3.7 -4.4 + 2015 3 1 2 264 2.4 2.9 1027.7 3.6 -4.5 + 2015 3 1 3 230 4.1 4.5 1027.4 4.2 -3.8 + 2015 3 1 4 242 8.1 9.2 1026.6 4.4 -3.1 + 2015 3 1 5 262 9.3 10.1 1026.6 4.1 -3.8 + 2015 3 1 6 267 8.6 9.6 1026.3 4.2 -3.8 + 2015 3 1 7 264 9.3 9.9 1026.1 3.9 -2.8 + 2015 3 1 8 268 8.2 9.1 1026.1 3.5 -3.0 + 2015 3 1 9 272 8.8 9.6 1025.4 3.2 -3.3 + ", + header = TRUE, + as.is<http://as.is> = TRUE)> > library(dplyr) > by_year <- x %>%+ group_by(X.YY) %>% + summarise_each(funs(mean))> > by_ym <- x %>%+ group_by(X.YY, MM ) %>% + summarise_each(funs(mean))> > by_ymd <- x %>%+ group_by(X.YY, MM, DD) %>% + summarise_each(funs(mean))> > by_yearSource: local data frame [1 x 10] X.YY MM DD hh WDI R.WSP D.GST PRES ATMP DEWP <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 2015 2 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6> by_ymSource: local data frame [3 x 10] Groups: X.YY [?] X.YY MM DD hh WDI R.WSP D.GST PRES ATMP DEWP <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 2015 1 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 2 2015 2 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 3 2015 3 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6> by_ymdSource: local data frame [3 x 10] Groups: X.YY, MM [?] X.YY MM DD hh WDI R.WSP D.GST PRES ATMP DEWP <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 2015 1 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 2 2015 2 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 3 2015 3 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6>Jim Holtman Data Munger Guru What is the problem that you are trying to solve? Tell me what you want to do, not how you want to do it. On Sun, Jul 17, 2016 at 5:42 PM, Jianling Fan <fanjianling at gmail.com<mailto:fanjianling at gmail.com>> wrote: Hello Tom, try aggregate() or cast(). Both works.I prefer the latter. library(reshape) desc<-melt(mydata, measure.vars=c("WDI","R.WSP", "D.GST", "PRES", "ATMP", "DEWP"), id.vars=c("X.YY","MM","DD")) summary<-cast(desc, X.YY+MM+DD~variable, mean) On 17 July 2016 at 06:22, Tom Mosca <tom at vims.edu<mailto:tom at vims.edu>> wrote:> Hello Good Folk, > > My dataframe looks like this: >> mydata > X.YY MM DD hh WDI R.WSP D.GST PRES ATMP DEWP > 1 2015 1 1 0 328 3.6 4.5 1028.0 3.8 -3.5 > 2 2015 1 1 1 300 2.1 2.7 1027.9 3.7 -4.4 > 3 2015 1 1 2 264 2.4 2.9 1027.7 3.6 -4.5 > 4 2015 1 1 3 230 4.1 4.5 1027.4 4.2 -3.8 > 5 2015 1 1 4 242 8.1 9.2 1026.6 4.4 -3.1 > 6 2015 1 1 5 262 9.3 10.1 1026.6 4.1 -3.8 > 7 2015 1 1 6 267 8.6 9.6 1026.3 4.2 -3.8 > 8 2015 1 1 7 264 9.3 9.9 1026.1 3.9 -2.8 > 9 2015 1 1 8 268 8.2 9.1 1026.1 3.5 -3.0 > 10 2015 1 1 9 272 8.8 9.6 1025.4 3.2 -3.3 ?K > > The first four columns are year, month, day, hour (0 ?V 23). I wish to take the means of the next six columns (WDIR, WSPD, GST, PRES, ATMP and DEWP) by year, month and day. That is, I want daily averages. > > Please help. Thank you. > > Tom > > [[alternative HTML version deleted]] > > > ______________________________________________ > R-help at r-project.org<mailto:R-help at r-project.org> mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code.-- Jianling Fan ?????? ______________________________________________ R-help at r-project.org<mailto:R-help at r-project.org> mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. [[alternative HTML version deleted]]
If you are very inexperienced with R you still have time to forget you ever heard of the attach function. Your code > attach(datATMP) > datATMP1 <- datATMP[order(MM),] > detach(datATMP) can be replaced by > datATMP1 <- datATMP[order(datATMP[["MM"]]),] Bill Dunlap TIBCO Software wdunlap tibco.com On Mon, Jul 18, 2016 at 6:18 AM, Tom Mosca <tom at vims.edu> wrote:> Dear Jim, > > > > I'm very inexperienced with R. > > > > I'm sorry I failed to recognize the flaw in my example. I just clipped > the first few lines of data, and should have realized that they were for > the first few hours of a single day. > > > > My first problem was to take the means by day. As all the data come from > a single year, I accomplished the goal by using: > > > datATMP<-aggregate(mydata, by=mydata[c("MM","DD")], FUN=mean) > > > > My second problem was to sort the results by month, for which I used: > > > attach(datATMP) > > datATMP1 <- datATMP[order(MM),] > > datATMP1 > > detach(datATMP) > > > > I have read that I should avoid using attach(), and should use with() > instead. However, I have not yet figured out how to do this with with(). > I'm only running short segments of code, and think I'll be alright with > attach() for the time being, but do want to develop better form. So, I'll > keep working on it. > > > > Thank you for your kind response and examples. I will study them. > > > > Sincerely, Tom > > > > > > ________________________________ > From: jim holtman [jholtman at gmail.com] > Sent: Sunday, July 17, 2016 7:14 PM > To: Jianling Fan > Cc: Tom Mosca; r-help at r-project.org > Subject: Re: [R] means by year, month and day > > Here is an example of using dplyr. Please provide a reasonable subset of > data. Your was all for the same date. Use 'dput' to put in your email. > > > x <- read.table(text = " X.YY MM DD hh WDI R.WSP D.GST PRES ATMP > DEWP > + 2015 1 1 0 328 3.6 4.5 1028.0 3.8 -3.5 > + 2015 1 1 1 300 2.1 2.7 1027.9 3.7 -4.4 > + 2015 1 1 2 264 2.4 2.9 1027.7 3.6 -4.5 > + 2015 1 1 3 230 4.1 4.5 1027.4 4.2 -3.8 > + 2015 1 1 4 242 8.1 9.2 1026.6 4.4 -3.1 > + 2015 1 1 5 262 9.3 10.1 1026.6 4.1 -3.8 > + 2015 1 1 6 267 8.6 9.6 1026.3 4.2 -3.8 > + 2015 1 1 7 264 9.3 9.9 1026.1 3.9 -2.8 > + 2015 1 1 8 268 8.2 9.1 1026.1 3.5 -3.0 > + 2015 1 1 9 272 8.8 9.6 1025.4 3.2 -3.3 > + 2015 2 1 0 328 3.6 4.5 1028.0 3.8 -3.5 > + 2015 2 1 1 300 2.1 2.7 1027.9 3.7 -4.4 > + 2015 2 1 2 264 2.4 2.9 1027.7 3.6 -4.5 > + 2015 2 1 3 230 4.1 4.5 1027.4 4.2 -3.8 > + 2015 2 1 4 242 8.1 9.2 1026.6 4.4 -3.1 > + 2015 2 1 5 262 9.3 10.1 1026.6 4.1 -3.8 > + 2015 2 1 6 267 8.6 9.6 1026.3 4.2 -3.8 > + 2015 2 1 7 264 9.3 9.9 1026.1 3.9 -2.8 > + 2015 2 1 8 268 8.2 9.1 1026.1 3.5 -3.0 > + 2015 2 1 9 272 8.8 9.6 1025.4 3.2 -3.3 > + 2015 3 1 0 328 3.6 4.5 1028.0 3.8 -3.5 > + 2015 3 1 1 300 2.1 2.7 1027.9 3.7 -4.4 > + 2015 3 1 2 264 2.4 2.9 1027.7 3.6 -4.5 > + 2015 3 1 3 230 4.1 4.5 1027.4 4.2 -3.8 > + 2015 3 1 4 242 8.1 9.2 1026.6 4.4 -3.1 > + 2015 3 1 5 262 9.3 10.1 1026.6 4.1 -3.8 > + 2015 3 1 6 267 8.6 9.6 1026.3 4.2 -3.8 > + 2015 3 1 7 264 9.3 9.9 1026.1 3.9 -2.8 > + 2015 3 1 8 268 8.2 9.1 1026.1 3.5 -3.0 > + 2015 3 1 9 272 8.8 9.6 1025.4 3.2 -3.3 > + ", > + header = TRUE, > + as.is<http://as.is> = TRUE) > > > > library(dplyr) > > by_year <- x %>% > + group_by(X.YY) %>% > + summarise_each(funs(mean)) > > > > by_ym <- x %>% > + group_by(X.YY, MM ) %>% > + summarise_each(funs(mean)) > > > > by_ymd <- x %>% > + group_by(X.YY, MM, DD) %>% > + summarise_each(funs(mean)) > > > > by_year > Source: local data frame [1 x 10] > X.YY MM DD hh WDI R.WSP D.GST PRES ATMP DEWP > <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> > 1 2015 2 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 > > by_ym > Source: local data frame [3 x 10] > Groups: X.YY [?] > X.YY MM DD hh WDI R.WSP D.GST PRES ATMP DEWP > <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> > 1 2015 1 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 > 2 2015 2 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 > 3 2015 3 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 > > by_ymd > Source: local data frame [3 x 10] > Groups: X.YY, MM [?] > X.YY MM DD hh WDI R.WSP D.GST PRES ATMP DEWP > <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> > 1 2015 1 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 > 2 2015 2 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 > 3 2015 3 1 4.5 269.7 6.45 7.21 1026.81 3.86 -3.6 > > > > > Jim Holtman > Data Munger Guru > > What is the problem that you are trying to solve? > Tell me what you want to do, not how you want to do it. > > On Sun, Jul 17, 2016 at 5:42 PM, Jianling Fan <fanjianling at gmail.com > <mailto:fanjianling at gmail.com>> wrote: > Hello Tom, > > try aggregate() or cast(). Both works.I prefer the latter. > > > library(reshape) > desc<-melt(mydata, measure.vars=c("WDI","R.WSP", "D.GST", "PRES", > "ATMP", "DEWP"), > id.vars=c("X.YY","MM","DD")) > summary<-cast(desc, X.YY+MM+DD~variable, mean) > > > > > > > > > > On 17 July 2016 at 06:22, Tom Mosca <tom at vims.edu<mailto:tom at vims.edu>> > wrote: > > Hello Good Folk, > > > > My dataframe looks like this: > >> mydata > > X.YY MM DD hh WDI R.WSP D.GST PRES ATMP DEWP > > 1 2015 1 1 0 328 3.6 4.5 1028.0 3.8 -3.5 > > 2 2015 1 1 1 300 2.1 2.7 1027.9 3.7 -4.4 > > 3 2015 1 1 2 264 2.4 2.9 1027.7 3.6 -4.5 > > 4 2015 1 1 3 230 4.1 4.5 1027.4 4.2 -3.8 > > 5 2015 1 1 4 242 8.1 9.2 1026.6 4.4 -3.1 > > 6 2015 1 1 5 262 9.3 10.1 1026.6 4.1 -3.8 > > 7 2015 1 1 6 267 8.6 9.6 1026.3 4.2 -3.8 > > 8 2015 1 1 7 264 9.3 9.9 1026.1 3.9 -2.8 > > 9 2015 1 1 8 268 8.2 9.1 1026.1 3.5 -3.0 > > 10 2015 1 1 9 272 8.8 9.6 1025.4 3.2 -3.3 ? > > > > The first four columns are year, month, day, hour (0 ? 23). I wish to > take the means of the next six columns (WDIR, WSPD, GST, PRES, ATMP and > DEWP) by year, month and day. That is, I want daily averages. > > > > Please help. Thank you. > > > > Tom > > > > [[alternative HTML version deleted]] > > > > > > ______________________________________________ > > R-help at r-project.org<mailto:R-help at r-project.org> mailing list -- To > UNSUBSCRIBE and more, see > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > > > -- > Jianling Fan > ??? > > ______________________________________________ > R-help at r-project.org<mailto:R-help at r-project.org> mailing list -- To > UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > > > [[alternative HTML version deleted]] > > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >[[alternative HTML version deleted]]