Dear all: I converted the columns (Baci, Meti, Fungii, Protozoai) into integers (using excel) and then imported the data (.txt) into R. Interestingly, the other three variables were loaded as INT, but the 'Baci' one continued as Num. I imported the data using the following command line: X <- read.delim(file.choose(), header = TRUE, dec = ".") Here is the structure of X:> str(X)'data.frame': 115 obs. of 5 variables: $ ID : Factor w/ 61 levels "107ZRED","112BLKW",..: 8 12 15 18 26 27 29 31 32 36 ... $ Baci : num 2.90e+12 5.55e+11 9.46e+11 8.13e+11 4.06e+11 ... $ Meti : int 352645997 334146268 767208656 171567266 462747405 414905627 237010514 387480048 214671355 328813226 ... $ Fungii : int 43645 19009 15998 2189 8972 8240 3133 17922 6156 13746 ... $ Protozoai: int 3220523 1851891 3252462 1665675 34123768 23175015 203685 4261780 43110492 69802572 ... I need Baci as an integer, and tried to convert it using as.integer function, but was not successful. Could anyone please help me to solve this problem. Thanks, ? -- Andre -------------- next part -------------- ID Baci Meti Fungii Protozoai 126BLK 2.90E+12 352645997 43645 3220523 13ZBLK 5.55E+11 334146268 19009 1851891 157BLK 9.46E+11 767208656 15998 3252462 162ZRED 8.13E+11 171567266 2189 1665675 17ZBLKY 4.06E+11 462747405 8972 34123768 184ZBLK 5.75E+11 414905627 8240 23175015 1ZBLKW 3.45E+10 237010514 3133 203685 2094ZBLK 3.49E+11 387480048 17922 4261780 20LZBLK 1.63E+11 214671355 6156 43110492 29ZBLK 3.37E+11 328813226 13746 69802572 2ZBLKG 3.13E+11 564519908 4003 93195958 60ZRED 3.76E+11 145383281 12473 33141411 77BLK 2.92E+11 227643897 13328 306363850 8ZBLK 2.45E+11 565298547 2900 29939862 91ZRED 5.62E+11 472996887 8584 73402283 112BLKW 7.02E+10 475554339 192654 37844605 1226BLK 1.84E+10 239034620 65524 3994847 12ZBLK 6.45E+10 296646742 286966 45244390 134BLK 9.65E+09 201168840 47474 2756770 160ZRED 5.96E+10 193983600 155040 79660710 166ZRED 8.14E+10 315417009 26056 85856558 17ZBLK G 1.88E+11 626249880 74214 17763633 226ZBLK 3.88E+10 181768548 291862 128256576 3ZBLK 2.38E+10 175939117 46015 8351259 58BLK 5.37E+10 304530782 50342 7718372 60ZBLK 4.23E+10 375725507 146473 58960339 72ZRED 9.58E+10 373650117 73205 171268872 7ZBLK 4.78E+10 146490232 17068 171268872 95BLK 4.18E+10 210377292 71368 31213851 9PZRED 7.12E+10 278312630 178204 392574732 107ZRED 1.18E+11 497812799 7074 5212968 129BLK 1.01E+10 172557004 565 373103 150ZRED 1.48E+11 343107486 7869 65118676 168BLK 9.45E+10 298332033 5281 17428719 174ZBLK 6.29E+10 269735103 24635 42532632 185ZRED 7.81E+10 647775276 1973 48855746 2ZBLKY 4.93E+09 35698451 3183 28935576 4089ZBLK 1.94E+10 326852779 1329 520051 438XZRED 7.20E+09 113153909 630 127811 4ZBLK 5.30E+10 248877230 1469 827989 706ZBLK 3.12E+10 151072339 2407 4885127 86BLK 9.39E+10 526984044 417 1034021 86ZRED 5.71E+10 385701592 7834 92440481 89BLK 3.80E+10 297806285 6314 62159379 112XZBLKG 9.56E+11 603355806 5205 199868382 1191ZBLK 4.59E+11 403738704 35115 93137246 122ZRED 2.93E+11 266699375 930 68471595 14ZBLK 8.03E+11 607043335 5570 75196835 15ZBLK 3.99E+11 185346266 1716 26429018 163BLK 7.18E+11 598193580 20475 419543828 175ZRED 2.08E+11 660223375 4421 35481033 1ZBLKY 6.84E+11 472986697 43059 137129730 20SXZBLK 3.16E+11 26119538 20297 8031502 22ZBLK 7.70E+11 823508297 154975 264859084 63ZBLK 2.10E+11 1601226529 13317 44878482 6ZBLK 1.31E+11 110772471 1395 40830068 82ZBLK 1.10E+12 839550736 5368 68087375 92ZBLK 4.32E+11 829679134 14981 98201518 94BLK 1.54E+11 197873442 1680 6800437 126BLK 2.22E+11 209765315 13000 92754991 13ZBLK 6.75E+11 366018180 18291 60965929 157BLK 2.88E+11 227660122 8904 20595699 162ZRED 1.85E+11 372912115 3124 516219 17ZBLKY 1.02E+11 170028711 4288 1391174 184ZBLK 4.28E+11 385951078 18173 142041693 1ZBLKW 1.26E+11 258658827 3974 1096335 2094ZBLK 2.80E+11 299019239 22940 4827333 20LZBLK 3.00E+11 258928407 1865 5996901 29ZBLK 2.75E+11 363091053 6551 7162010 2ZBLKG 4.53E+11 464020273 12748 20250369 60ZRED 2.45E+11 352738870 15630 22315303 77BLK 1.44E+11 342240282 4192 52542312 8ZBLK 6.66E+10 493488493 3308 8744844 91ZRED 3.52E+10 232562927 861 3506357 112BLKW 2.23E+10 261910886 35522 20277307 1226 BLK 2.39E+10 107972216 48447 25703984 12ZBLK 9.52E+09 392721062 21520 24103013 134BLK 1.73E+10 320819409 62156 107809914 160ZRED 1.06E+11 423290206 201494 62173555 166ZRED 2.92E+10 173837762 9813 4325219 17ZBLKG 2.87E+10 108073600 151168 19695454 226ZBLK 3.58E+10 470892623 203516 447240999 3ZBLK 1.98E+10 149631240 5962 758907 58BLK 6.71E+09 98009797 10103 18282903 60ZBLK 4.12E+10 382747754 96469 4348146 7ZBLK 7.97E+09 88160280 79680 0 95BLK 2.98E+10 202534656 33088 51649275 9PZRED 8.24E+10 388722787 274104 50360078 107ZRED 1.59E+11 109157702 170772 3550234 129BLK 7.59E+09 56423562 1081 1655868 150ZRED 5.69E+10 961853511 33383 13049429 168BLK 6.45E+10 858912603 5990 2934900 174ZBLK 2.04E+10 275907178 601 14077017 185ZRED 1.01E+11 659755530 12468 145136849 2ZBLKY 1.74E+11 458456526 1757 1314242 4089ZBLK 1.88E+11 166340053 2227 861368 438XZRED 3.83E+11 146896139 17545 25426282 4ZBLK 3.96E+11 340192787 7375 16393765 706ZBLK 3.35E+11 656715841 45618 16360596 86ZRED 3.58E+11 594300567 3410 6976935 89BLK 3.51E+11 452257311 22147 12239312 112XZBLKG 2.68E+11 32640092 49973 30637702 1191ZBLK 2.64E+11 744630951 6067 40742989 122ZRED 8.69E+11 1949076953 11653 75332032 14ZBLK 9.29E+11 683016842 50505 70023751 15ZBLK 9.35E+11 310951369 11492 73268344 163BLK 5.01E+11 285192250 12751 43365735 175ZRED 1.19E+12 597936244 14100 44029110 20SXZBLK 5.57E+11 903885504 22956 119497274 22ZBLK 2.60E+11 667969933 23005 6043141 63ZBLK 2.98E+11 685111047 3578 23920500 6ZBLK 4.77E+11 543466563 11550 39048343 82ZBLK 2.55E+11 697276518 3153 72481942 92ZBLK 1.95E+11 272494229 48511 60524953 94BLK 1.02E+12 2146559014 104139 258779386
No.>From ?as.integer:"Note that current implementations of R use 32-bit integers for integer vectors, so the range of representable integers is restricted to about +/-2*10^9: doubles can hold much larger integers exactly. " Cheers, Bert Bert Gunter "The trouble with having an open mind is that people keep coming along and sticking things into it." -- Opus (aka Berkeley Breathed in his "Bloom County" comic strip ) On Tue, Apr 26, 2016 at 10:11 AM, Andr? Luis Neves <andrluis at ualberta.ca> wrote:> Dear all: > > I converted the columns (Baci, Meti, Fungii, Protozoai) into integers > (using excel) and then imported the data (.txt) into R. Interestingly, the > other three variables were loaded as INT, but the 'Baci' one continued as > Num. > > I imported the data using the following command line: > > X <- read.delim(file.choose(), > header = TRUE, > dec = ".") > > Here is the structure of X: > >> str(X) > 'data.frame': 115 obs. of 5 variables: > $ ID : Factor w/ 61 levels "107ZRED","112BLKW",..: 8 12 15 18 26 27 > 29 31 32 36 ... > $ Baci : num 2.90e+12 5.55e+11 9.46e+11 8.13e+11 4.06e+11 ... > $ Meti : int 352645997 334146268 767208656 171567266 462747405 > 414905627 237010514 387480048 214671355 328813226 ... > $ Fungii : int 43645 19009 15998 2189 8972 8240 3133 17922 6156 13746 > ... > $ Protozoai: int 3220523 1851891 3252462 1665675 34123768 23175015 203685 > 4261780 43110492 69802572 ... > > > I need Baci as an integer, and tried to convert it using as.integer > function, but was not successful. > > > Could anyone please help me to solve this problem. > > Thanks, > > > > -- > Andre > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code.
That is the "impossible" case, since R integers are 32 bit signed (~2?10^9) even in 64 bit R. You can Google for "R arbitrary precision" and look for packages like Ryacas, bit64 or gmp. However, having such large integers stored as integers would not be necessary for most statistical analyses so you should confirm that your analysis cannot be performed using floating point numbers before resorting to that. -- Sent from my phone. Please excuse my brevity. On April 26, 2016 10:11:38 AM PDT, "Andr? Luis Neves" <andrluis at ualberta.ca> wrote:>Dear all: > >I converted the columns (Baci, Meti, Fungii, Protozoai) into integers >(using excel) and then imported the data (.txt) into R. Interestingly, >the >other three variables were loaded as INT, but the 'Baci' one continued >as >Num. > >I imported the data using the following command line: > >X <- read.delim(file.choose(), > header = TRUE, > dec = ".") > >Here is the structure of X: > >> str(X) >'data.frame': 115 obs. of 5 variables: >$ ID : Factor w/ 61 levels "107ZRED","112BLKW",..: 8 12 15 18 26 >27 >29 31 32 36 ... > $ Baci : num 2.90e+12 5.55e+11 9.46e+11 8.13e+11 4.06e+11 ... > $ Meti : int 352645997 334146268 767208656 171567266 462747405 >414905627 237010514 387480048 214671355 328813226 ... >$ Fungii : int 43645 19009 15998 2189 8972 8240 3133 17922 6156 >13746 >... >$ Protozoai: int 3220523 1851891 3252462 1665675 34123768 23175015 >203685 >4261780 43110492 69802572 ... > > >I need Baci as an integer, and tried to convert it using as.integer >function, but was not successful. > > >Could anyone please help me to solve this problem. > >Thanks, > > >? >-- >Andre > > >------------------------------------------------------------------------ > >______________________________________________ >R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >https://stat.ethz.ch/mailman/listinfo/r-help >PLEASE do read the posting guide >http://www.R-project.org/posting-guide.html >and provide commented, minimal, self-contained, reproducible code.[[alternative HTML version deleted]]
Please respond to the list. It will be obvious why in a second. That's not my threshhold! -- it's R's. Your numeric integers cannot be exactly represented as integers in R. Period. Maybe there are special packages for extended arithmetic that can do this. but someone else would have to help you there. See here for a discussion that might be helpful: http://www.r-bloggers.com/r-in-a-64-bit-world/ Cheers, Bert Bert Gunter "The trouble with having an open mind is that people keep coming along and sticking things into it." -- Opus (aka Berkeley Breathed in his "Bloom County" comic strip ) On Tue, Apr 26, 2016 at 10:46 AM, Andr? Luis Neves <andrluis at ualberta.ca> wrote:> So, How could I implement this, Bert? > > I really need that the variable be converted unto an integer, and it seems > that my numbers are much higher than that threshold you stated. > > Thanks, > > Andre > > On Tue, Apr 26, 2016 at 11:42 AM, Bert Gunter <bgunter.4567 at gmail.com> > wrote: >> >> No. >> >> From ?as.integer: >> >> "Note that current implementations of R use 32-bit integers for >> integer vectors, so the range of representable integers is restricted >> to about +/-2*10^9: doubles can hold much larger integers exactly. " >> >> Cheers, >> Bert >> >> >> Bert Gunter >> >> "The trouble with having an open mind is that people keep coming along >> and sticking things into it." >> -- Opus (aka Berkeley Breathed in his "Bloom County" comic strip ) >> >> >> On Tue, Apr 26, 2016 at 10:11 AM, Andr? Luis Neves <andrluis at ualberta.ca> >> wrote: >> > Dear all: >> > >> > I converted the columns (Baci, Meti, Fungii, Protozoai) into integers >> > (using excel) and then imported the data (.txt) into R. Interestingly, >> > the >> > other three variables were loaded as INT, but the 'Baci' one continued >> > as >> > Num. >> > >> > I imported the data using the following command line: >> > >> > X <- read.delim(file.choose(), >> > header = TRUE, >> > dec = ".") >> > >> > Here is the structure of X: >> > >> >> str(X) >> > 'data.frame': 115 obs. of 5 variables: >> > $ ID : Factor w/ 61 levels "107ZRED","112BLKW",..: 8 12 15 18 26 >> > 27 >> > 29 31 32 36 ... >> > $ Baci : num 2.90e+12 5.55e+11 9.46e+11 8.13e+11 4.06e+11 ... >> > $ Meti : int 352645997 334146268 767208656 171567266 462747405 >> > 414905627 237010514 387480048 214671355 328813226 ... >> > $ Fungii : int 43645 19009 15998 2189 8972 8240 3133 17922 6156 >> > 13746 >> > ... >> > $ Protozoai: int 3220523 1851891 3252462 1665675 34123768 23175015 >> > 203685 >> > 4261780 43110492 69802572 ... >> > >> > >> > I need Baci as an integer, and tried to convert it using as.integer >> > function, but was not successful. >> > >> > >> > Could anyone please help me to solve this problem. >> > >> > Thanks, >> > >> > >> > >> > -- >> > Andre >> > >> > ______________________________________________ >> > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >> > https://stat.ethz.ch/mailman/listinfo/r-help >> > PLEASE do read the posting guide >> > http://www.R-project.org/posting-guide.html >> > and provide commented, minimal, self-contained, reproducible code. > > > > > -- > Andre
Can you explain why you need them as 'integer', A floating point representation can hold a value upto ~4.5e15 as an "integer" keeping the precision that you might need. Jim Holtman Data Munger Guru What is the problem that you are trying to solve? Tell me what you want to do, not how you want to do it. On Tue, Apr 26, 2016 at 1:11 PM, Andr? Luis Neves <andrluis at ualberta.ca> wrote:> Dear all: > > I converted the columns (Baci, Meti, Fungii, Protozoai) into integers > (using excel) and then imported the data (.txt) into R. Interestingly, the > other three variables were loaded as INT, but the 'Baci' one continued as > Num. > > I imported the data using the following command line: > > X <- read.delim(file.choose(), > header = TRUE, > dec = ".") > > Here is the structure of X: > > > str(X) > 'data.frame': 115 obs. of 5 variables: > $ ID : Factor w/ 61 levels "107ZRED","112BLKW",..: 8 12 15 18 26 27 > 29 31 32 36 ... > $ Baci : num 2.90e+12 5.55e+11 9.46e+11 8.13e+11 4.06e+11 ... > $ Meti : int 352645997 334146268 767208656 171567266 462747405 > 414905627 237010514 387480048 214671355 328813226 ... > $ Fungii : int 43645 19009 15998 2189 8972 8240 3133 17922 6156 13746 > ... > $ Protozoai: int 3220523 1851891 3252462 1665675 34123768 23175015 203685 > 4261780 43110492 69802572 ... > > > I need Baci as an integer, and tried to convert it using as.integer > function, but was not successful. > > > Could anyone please help me to solve this problem. > > Thanks, > > > ? > -- > Andre > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >[[alternative HTML version deleted]]
Ok. I`m trying to run a Poisson glmm with an observation-level random intercept. But I`m getting the following error for the 'Baci' variable: 'Error: (maxstephalfit) PIRLS step-halvings failed to reduce deviance in pwrssUpdate'. I guess this message is because the baci variable is not a an integer, and cannot be transformed into an integer as R has a threshold of 2x10^9 even in 64 bit R. It runs fine for the fungii variable. If you guys want to run the data (attached), the full command is below. Thanks. --------------------------------------------- ##Import data: qPCR <- read.delim(file.choose(), header = TRUE, dec = ".") ##Load package library(lme4) ##Other steps: qPCR$obs <- 1:nrow(qPCR) qPCR$fID<-as.factor(qPCR$ID) qPCR$fDiet<-as.factor(qPCR$Diet) ##Run the model: M1 <- glmer (Baci ~ fDiet + Crossover + (1|fID:Crossover) + (1|obs), family = poisson, data=qPCR) Andre On Tue, Apr 26, 2016 at 2:36 PM, jim holtman <jholtman at gmail.com> wrote:> Can you explain why you need them as 'integer', A floating point > representation can hold a value upto ~4.5e15 as an "integer" keeping the > precision that you might need. > > > Jim Holtman > Data Munger Guru > > What is the problem that you are trying to solve? > Tell me what you want to do, not how you want to do it. > > On Tue, Apr 26, 2016 at 1:11 PM, Andr? Luis Neves <andrluis at ualberta.ca> > wrote: > >> Dear all: >> >> I converted the columns (Baci, Meti, Fungii, Protozoai) into integers >> (using excel) and then imported the data (.txt) into R. Interestingly, the >> other three variables were loaded as INT, but the 'Baci' one continued as >> Num. >> >> I imported the data using the following command line: >> >> X <- read.delim(file.choose(), >> header = TRUE, >> dec = ".") >> >> Here is the structure of X: >> >> > str(X) >> 'data.frame': 115 obs. of 5 variables: >> $ ID : Factor w/ 61 levels "107ZRED","112BLKW",..: 8 12 15 18 26 27 >> 29 31 32 36 ... >> $ Baci : num 2.90e+12 5.55e+11 9.46e+11 8.13e+11 4.06e+11 ... >> $ Meti : int 352645997 334146268 767208656 171567266 462747405 >> 414905627 237010514 387480048 214671355 328813226 ... >> $ Fungii : int 43645 19009 15998 2189 8972 8240 3133 17922 6156 13746 >> ... >> $ Protozoai: int 3220523 1851891 3252462 1665675 34123768 23175015 >> 203685 >> 4261780 43110492 69802572 ... >> >> >> I need Baci as an integer, and tried to convert it using as.integer >> function, but was not successful. >> >> >> Could anyone please help me to solve this problem. >> >> Thanks, >> >> >> ? >> -- >> Andre >> >> ______________________________________________ >> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. >> > >-- Andre -------------- next part -------------- ID Crossover Period Diet Pen Time Baci Fungii fNDF Starch 126BLK 1 1 Forage 1 End1 2.90E+12 43645 3.87056104 1.443771827 13ZBLK 1 1 Forage 1 End1 5.55E+11 19009 3.970286296 1.480970702 157BLK 1 1 Forage 1 End1 9.46E+11 15998 4.114130366 1.534626493 162ZRED 1 1 Forage 1 End1 8.13E+11 2189 3.600760128 1.343132423 17ZBLKY 1 1 Forage 1 End1 4.06E+11 8972 3.79087129 1.414046468 184ZBLK 1 1 Forage 1 End1 5.75E+11 8240 3.815881751 1.42337571 1ZBLKW 1 1 Forage 1 End1 34490836164 3133 3.295433507 1.229241447 2094ZBLK 1 1 Forage 1 End1 3.49E+11 17922 3.737865394 1.394274549 20LZBLK 1 1 Forage 1 End1 1.63E+11 6156 4.007824601 1.494972999 29ZBLK 1 1 Forage 1 End1 3.37E+11 13746 3.59031272 1.339235398 2ZBLKG 1 1 Forage 1 End1 3.13E+11 4003 3.964994752 1.478996884 60ZRED 1 1 Forage 1 End1 3.76E+11 12473 3.477652579 1.297211636 77BLK 1 1 Forage 1 End1 2.92E+11 13328 4.546906317 1.696057799 8ZBLK 1 1 Forage 1 End1 2.45E+11 2900 4.447927304 1.659137284 91ZRED 1 1 Forage 1 End1 5.62E+11 8584 4.118042491 1.536085769 112BLKW 2 1 Forage 2 End1 70249927920 192654 4.024558544 1.501214987 1226BLK 2 1 Forage 2 End1 18390770816 65524 3.933087193 1.467094931 12ZBLK 2 1 Forage 2 End1 64465242768 286966 3.678844325 1.372258889 134BLK 2 1 Forage 2 End1 9652868358 47474 3.902242465 1.455589429 160ZRED 2 1 Forage 2 End1 59600548800 155040 3.853736644 1.437496099 166ZRED 2 1 Forage 2 End1 81366127920 26056 4.037719564 1.506124226 17ZBLK G 2 1 Forage 2 End1 1.88E+11 74214 3.498366487 1.304938205 226ZBLK 2 1 Forage 2 End1 38794514336 291862 3.406420254 1.270641011 3ZBLK 2 1 Forage 2 End1 23837817696 46015 3.865246883 1.441789574 58BLK 2 1 Forage 2 End1 53734722624 50342 4.190382875 1.563069714 60ZBLK 2 1 Forage 2 End1 42301298024 146473 3.628258067 1.353389528 72ZRED 2 1 Forage 2 End1 95837208152 73205 4.123718464 1.538202984 7ZBLK 2 1 Forage 2 End1 47824296528 17068 4.028244534 1.502589911 95BLK 2 1 Forage 2 End1 41780037212 71368 4.099205498 1.529059315 9PZRED 2 1 Forage 2 End1 71202504840 178204 3.380912297 1.261126197 107ZRED 3 1 Grain 3 End1 1.18E+11 7074 2.146324344 3.007347766 129BLK 3 1 Grain 3 End1 10054798609 565 2.372894545 3.324809285 150ZRED 3 1 Grain 3 End1 1.48E+11 7869 2.152246315 3.015645405 168BLK 3 1 Grain 3 End1 94464253180 5281 2.500082872 3.503020716 174ZBLK 3 1 Grain 3 End1 62911040256 24635 2.273695448 3.185815296 185ZRED 3 1 Grain 3 End1 78074111590 1973 1.894214123 2.654100545 2ZBLKY 3 1 Grain 3 End1 4929843844 3183 2.483620769 3.479954645 4089ZBLK 3 1 Grain 3 End1 19370087262 1329 2.213050085 3.100841327 438XZRED 3 1 Grain 3 End1 7196105124 630 2.217241768 3.106714553 4ZBLK 3 1 Grain 3 End1 52954599928 1469 2.217302693 3.10679992 706ZBLK 3 1 Grain 3 End1 31205271204 2407 2.15080847 3.013630752 86BLK 3 1 Grain 3 End1 93866942272 417 2.753545642 3.858163077 86ZRED 3 1 Grain 3 End1 57127597772 7834 2.295665227 3.216598513 89BLK 3 1 Grain 3 End1 37992593088 6314 2.476126918 3.469454547 112XZBLKG 4 1 Grain 4 End1 9.56E+11 5205 1.890716993 2.649200499 1191ZBLK 4 1 Grain 4 End1 4.59E+11 35115 2.043372229 2.863095191 122ZRED 4 1 Grain 4 End1 2.93E+11 930 2.1174456 2.966883971 14ZBLK 4 1 Grain 4 End1 8.03E+11 5570 2.268248698 3.178183517 15ZBLK 4 1 Grain 4 End1 3.99E+11 1716 2.22233515 3.113851206 163BLK 4 1 Grain 4 End1 7.18E+11 20475 2.524745564 3.537577138 175ZRED 4 1 Grain 4 End1 2.08E+11 4421 2.113107696 2.960805865 1ZBLKY 4 1 Grain 4 End1 6.84E+11 43059 2.593311258 3.633648772 20SXZBLK 4 1 Grain 4 End1 3.16E+11 20297 1.878154129 2.631597894 22ZBLK 4 1 Grain 4 End1 7.70E+11 154975 2.263447759 3.171456625 63ZBLK 4 1 Grain 4 End1 2.10E+11 13317 2.444859889 3.425644379 6ZBLK 4 1 Grain 4 End1 1.31E+11 1395 2.630183444 3.685312672 82ZBLK 4 1 Grain 4 End1 1.10E+12 5368 2.102445712 2.945866701 92ZBLK 4 1 Grain 4 End1 4.32E+11 14981 2.137551055 2.995054968 94BLK 4 1 Grain 4 End1 1.54E+11 1680 2.533433557 3.549750423 126BLK 1 2 Forage 1 End2 2.22E+11 13000 4.760093885 1.775579657 13ZBLK 1 2 Forage 1 End2 6.75E+11 18291 4.585536093 1.71046723 157BLK 1 2 Forage 1 End2 2.88E+11 8904 5.286298418 1.971861094 162ZRED 1 2 Forage 1 End2 1.85E+11 3124 4.501846838 1.679250002 17ZBLKY 1 2 Forage 1 End2 1.02E+11 4288 4.722218572 1.761451651 184ZBLK 1 2 Forage 1 End2 4.28E+11 18173 4.787683496 1.785870957 1ZBLKW 1 2 Forage 1 End2 1.26E+11 3974 4.120447496 1.536982868 2094ZBLK 1 2 Forage 1 End2 2.80E+11 22940 5.320906238 1.98477028 20LZBLK 1 2 Forage 1 End2 3.00E+11 1865 4.910904822 1.831834185 29ZBLK 1 2 Forage 1 End2 2.75E+11 6551 4.64713525 1.733444553 2ZBLKG 1 2 Forage 1 End2 4.53E+11 12748 5.216415474 1.945793806 60ZRED 1 2 Forage 1 End2 2.45E+11 15630 4.320339869 1.611545438 77BLK 1 2 Forage 1 End2 1.44E+11 4192 4.946939294 1.845275532 8ZBLK 1 2 Forage 1 End2 66556874137 3308 5.369136284 2.002760742 91ZRED 1 2 Forage 1 End2 35178277612 861 5.194279355 1.937536734 112BLKW 2 2 Grain 2 End2 22345514304 35522 2.189470508 3.067802525 1226 BLK 2 2 Grain 2 End2 23881492608 48447 2.61032416 3.657486601 12ZBLK 2 2 Grain 2 End2 9521876928 21520 2.66964942 3.740610891 134BLK 2 2 Grain 2 End2 17265347752 62156 3.266154115 4.576410507 160ZRED 2 2 Grain 2 End2 1.06E+11 201494 2.801511562 3.925371093 166ZRED 2 2 Grain 2 End2 29245020768 9813 2.633190427 3.689525942 17ZBLKG 2 2 Grain 2 End2 28686200320 151168 2.684194907 3.760991472 226ZBLK 2 2 Grain 2 End2 35823496868 203516 2.656602944 3.722330667 3ZBLK 2 2 Grain 2 End2 19774776776 5962 3.01716587 4.22753768 58BLK 2 2 Grain 2 End2 6712885842 10103 2.776815993 3.890768604 60ZBLK 2 2 Grain 2 End2 41185544916 96469 2.757875102 3.86422935 7ZBLK 2 2 Grain 2 End2 7965902400 79680 2.876690768 4.030709327 95BLK 2 2 Grain 2 End2 29843174520 33088 3.319343593 4.650937575 9PZRED 2 2 Grain 2 End2 82361326080 274104 2.695285046 3.776530553 107ZRED 3 2 Forage 3 End2 1.59E+11 170772 4.574352981 1.706295778 129BLK 3 2 Forage 3 End2 7594466101 1081 5.509799583 2.055230063 150ZRED 3 2 Forage 3 End2 56872492896 33383 4.602932045 1.716956157 168BLK 3 2 Forage 3 End2 64542557920 5990 5.156588126 1.923477393 174ZBLK 3 2 Forage 3 End2 20398760236 601 4.777512847 1.782077167 185ZRED 3 2 Forage 3 End2 1.01E+11 12468 4.531116217 1.690167878 2ZBLKY 3 2 Forage 3 End2 1.74E+11 1757 5.336898548 1.990735629 4089ZBLK 3 2 Forage 3 End2 1.88E+11 2227 4.617405661 1.722355012 438XZRED 3 2 Forage 3 End2 3.83E+11 17545 4.698264622 1.752516503 4ZBLK 3 2 Forage 3 End2 3.96E+11 7375 4.899836763 1.827705648 706ZBLK 3 2 Forage 3 End2 3.35E+11 45618 4.437969639 1.655422939 86ZRED 3 2 Forage 3 End2 3.58E+11 3410 4.810601973 1.79441986 89BLK 3 2 Forage 3 End2 3.51E+11 22147 4.768193587 1.778600956 112XZBLKG 4 2 Grain 4 End2 2.68E+11 49973 2.531626089 3.547217868 1191ZBLK 4 2 Grain 4 End2 2.64E+11 6067 2.63885618 3.697464579 122ZRED 4 2 Grain 4 End2 8.69E+11 11653 2.389283575 3.347772968 14ZBLK 4 2 Grain 4 End2 9.29E+11 50505 2.780220526 3.895538906 15ZBLK 4 2 Grain 4 End2 9.35E+11 11492 2.662929278 3.731194885 163BLK 4 2 Grain 4 End2 5.01E+11 12751 2.616739418 3.666475416 175ZRED 4 2 Grain 4 End2 1.19E+12 14100 2.539769021 3.558627433 20SXZBLK 4 2 Grain 4 End2 5.57E+11 22956 2.310979313 3.238056024 22ZBLK 4 2 Grain 4 End2 2.60E+11 23005 2.772700065 3.885001523 63ZBLK 4 2 Grain 4 End2 2.98E+11 3578 2.921279989 4.093186042 6ZBLK 4 2 Grain 4 End2 4.77E+11 11550 2.511694326 3.519290242 82ZBLK 4 2 Grain 4 End2 2.55E+11 3153 2.781770351 3.897710461 92ZBLK 4 2 Grain 4 End2 1.95E+11 48511 2.666117852 3.735662593 94BLK 4 2 Grain 4 End2 1.02E+12 104139 2.966186797 4.156107749