Dear R-devel list members, Ben Fairbank draw it to my attention that factanal() (in the stats package) doesn't report factor correlations for oblique rotations. Looking at the source, I see that factanal also doesn't save the factor-transformation (rotation) matrix from which these correlations can be computed. I've modified the source, attached below, so that the transformation matrix is saved if its available; as well, I've modified print.factanal() to print the factor-correlations for oblique solutions. Regards, John ------------ snip------------ # modifications by J. Fox, 26 June 2005 marked in source ## Hmm, MM thinks diag(.) needs checking { diag(vec) when length(vec)==1 !} ## However, MM does not understand that factor analysis ## is a *multi*variate technique! factanal <- function (x, factors, data = NULL, covmat = NULL, n.obs = NA, subset, na.action, start = NULL, scores = c("none", "regression", "Bartlett"), rotation = "varimax", control = NULL, ...) { sortLoadings <- function(Lambda) { cn <- colnames(Lambda) Phi <- attr(Lambda, "covariance") ssq <- apply(Lambda, 2, function(x) -sum(x^2)) Lambda <- Lambda[, order(ssq), drop = FALSE] colnames(Lambda) <- cn neg <- colSums(Lambda) < 0 Lambda[, neg] <- -Lambda[, neg] if(!is.null(Phi)) { unit <- ifelse(neg, -1, 1) attr(Lambda, "covariance") <- unit %*% Phi[order(ssq), order(ssq)] %*% unit } Lambda } cl <- match.call() na.act <- NULL if (is.list(covmat)) { if (any(is.na(match(c("cov", "n.obs"), names(covmat))))) stop("'covmat' is not a valid covariance list") cv <- covmat$cov n.obs <- covmat$n.obs have.x <- FALSE } else if (is.matrix(covmat)) { cv <- covmat have.x <- FALSE } else if (is.null(covmat)) { if(missing(x)) stop("neither 'x' nor 'covmat' supplied") have.x <- TRUE if(inherits(x, "formula")) { ## this is not a `standard' model-fitting function, ## so no need to consider contrasts or levels mt <- terms(x, data = data) if(attr(mt, "response") > 0) stop("response not allowed in formula") attr(mt, "intercept") <- 0 mf <- match.call(expand.dots = FALSE) names(mf)[names(mf) == "x"] <- "formula" mf$factors <- mf$covmat <- mf$scores <- mf$start <- mf$rotation <- mf$control <- mf$... <- NULL mf[[1]] <- as.name("model.frame") mf <- eval.parent(mf) na.act <- attr(mf, "na.action") if(any(sapply(mf, function(x) is.factor(x) || !is.numeric(x)))) stop("factor analysis applies only to numerical variables") z <- model.matrix(mt, mf) } else { z <- as.matrix(x) if(!is.numeric(z)) stop("factor analysis applies only to numerical variables") if(!missing(subset)) z <- z[subset, , drop = FALSE] } covmat <- cov.wt(z) cv <- covmat$cov n.obs <- covmat$n.obs } else stop("'covmat' is of unknown type") scores <- match.arg(scores) if(scores != "none" && !have.x) stop("requested scores without an 'x' matrix") p <- ncol(cv) if(p < 3) stop("factor analysis requires at least three variables") dof <- 0.5 * ((p - factors)^2 - p - factors) if(dof < 0) stop(gettextf("%d factors is too many for %d variables", factors, p), domain = NA) sds <- sqrt(diag(cv)) cv <- cv/(sds %o% sds) cn <- list(nstart = 1, trace = FALSE, lower = 0.005) cn[names(control)] <- control more <- list(...)[c("nstart", "trace", "lower", "opt", "rotate")] if(length(more)) cn[names(more)] <- more if(is.null(start)) { start <- (1 - 0.5*factors/p)/diag(solve(cv)) if((ns <- cn$nstart) > 1) start <- cbind(start, matrix(runif(ns-1), p, ns-1, byrow=TRUE)) } start <- as.matrix(start) if(nrow(start) != p) stop(gettextf("'start' must have %d rows", p), domain = NA) nc <- ncol(start) if(nc < 1) stop("no starting values supplied") best <- Inf for (i in 1:nc) { nfit <- factanal.fit.mle(cv, factors, start[, i], max(cn$lower, 0), cn$opt) if(cn$trace) cat("start", i, "value:", format(nfit$criteria[1]), "uniqs:", format(as.vector(round(nfit$uniquenesses, 4))), "\n") if(nfit$converged && nfit$criteria[1] < best) { fit <- nfit best <- fit$criteria[1] } } if(best == Inf) stop("unable to optimize from these starting value(s)") load <- fit$loadings if(rotation != "none") { rot <- do.call(rotation, c(list(load), cn$rotate)) # the following lines modified by J. Fox, 26 June 2005 if (is.list(rot)){ load <- rot$loadings fit$rotmat <- rot$rotmat } else load <- rot # end modifications J. Fox, 26 June 2005 } fit$loadings <- sortLoadings(load) class(fit$loadings) <- "loadings" fit$na.action <- na.act # not used currently if(have.x && scores != "none") { Lambda <- fit$loadings zz <- scale(z, TRUE, TRUE) switch(scores, regression = { sc <- zz %*% solve(cv, Lambda) if(!is.null(Phi <- attr(Lambda, "covariance"))) sc <- sc %*% Phi }, Bartlett = { d <- 1/fit$uniquenesses tmp <- t(Lambda * d) sc <- t(solve(tmp %*% Lambda, tmp %*% t(zz))) }) rownames(sc) <- rownames(z) colnames(sc) <- colnames(Lambda) if(!is.null(na.act)) sc <- napredict(na.act, sc) fit$scores <- sc } if(!is.na(n.obs) && dof > 0) { fit$STATISTIC <- (n.obs - 1 - (2 * p + 5)/6 - (2 * factors)/3) * fit$criteria["objective"] fit$PVAL <- pchisq(fit$STATISTIC, dof, lower.tail = FALSE) } fit$n.obs <- n.obs fit$call <- cl fit } factanal.fit.mle <- function(cmat, factors, start=NULL, lower = 0.005, control = NULL, ...) { FAout <- function(Psi, S, q) { sc <- diag(1/sqrt(Psi)) Sstar <- sc %*% S %*% sc E <- eigen(Sstar, symmetric = TRUE) L <- E$vectors[, 1:q, drop = FALSE] load <- L %*% diag(sqrt(pmax(E$values[1:q] - 1, 0)), q) diag(sqrt(Psi)) %*% load } FAfn <- function(Psi, S, q) { sc <- diag(1/sqrt(Psi)) Sstar <- sc %*% S %*% sc E <- eigen(Sstar, symmetric = TRUE, only.values = TRUE) e <- E$values[-(1:q)] e <- sum(log(e) - e) - q + nrow(S) ## print(round(c(Psi, -e), 5)) # for tracing -e } FAgr <- function(Psi, S, q) { sc <- diag(1/sqrt(Psi)) Sstar <- sc %*% S %*% sc E <- eigen(Sstar, symmetric = TRUE) L <- E$vectors[, 1:q, drop = FALSE] load <- L %*% diag(sqrt(pmax(E$values[1:q] - 1, 0)), q) load <- diag(sqrt(Psi)) %*% load g <- load %*% t(load) + diag(Psi) - S diag(g)/Psi^2 } p <- ncol(cmat) if(is.null(start)) start <- (1 - 0.5*factors/p)/diag(solve(cmat)) res <- optim(start, FAfn, FAgr, method = "L-BFGS-B", lower = lower, upper = 1, control = c(list(fnscale=1, parscale = rep(0.01, length(start))), control), q = factors, S = cmat) Lambda <- FAout(res$par, cmat, factors) dimnames(Lambda) <- list(dimnames(cmat)[[1]], paste("Factor", 1:factors, sep = "")) p <- ncol(cmat) dof <- 0.5 * ((p - factors)^2 - p - factors) un <- res$par names(un) <- colnames(cmat) class(Lambda) <- "loadings" ans <- list(converged = res$convergence == 0, loadings = Lambda, uniquenesses = un, correlation = cmat, criteria = c(objective = res$value, counts = res$counts), factors = factors, dof = dof, method = "mle") class(ans) <- "factanal" ans } print.loadings <- function(x, digits = 3, cutoff = 0.1, sort = FALSE, ...) { Lambda <- unclass(x) p <- nrow(Lambda) factors <- ncol(Lambda) if (sort) { mx <- max.col(abs(Lambda)) ind <- cbind(1:p, mx) mx[abs(Lambda[ind]) < 0.5] <- factors + 1 Lambda <- Lambda[order(mx, 1:p),] } cat("\nLoadings:\n") fx <- format(round(Lambda, digits)) names(fx) <- NULL nc <- nchar(fx[1], type="c") fx[abs(Lambda) < cutoff] <- paste(rep(" ", nc), collapse = "") print(fx, quote = FALSE, ...) vx <- colSums(x^2) varex <- rbind("SS loadings" = vx) if(is.null(attr(x, "covariance"))) { varex <- rbind(varex, "Proportion Var" = vx/p) if(factors > 1) varex <- rbind(varex, "Cumulative Var" = cumsum(vx/p)) } cat("\n") print(round(varex, digits)) invisible(x) } print.factanal <- function(x, digits = 3, ...) { cat("\nCall:\n", deparse(x$call), "\n\n", sep = "") cat("Uniquenesses:\n") print(round(x$uniquenesses, digits), ...) print(x$loadings, digits = digits, ...) # the following lines added by J. Fox, 26 June 2005 if (!is.null(x$rotmat)){ tmat <- solve(x$rotmat) R <- tmat %*% t(tmat) factors <- x$factors rownames(R) <- colnames(R) <- paste("Factor", 1:factors, sep="") if (TRUE != all.equal(R, diag(factors))){ cat("\nFactor Correlations:\n") print(R, digits=digits, ...) } } # end additions J. Fox, 23 June 2005 if(!is.null(x$STATISTIC)) { factors <- x$factors cat("\nTest of the hypothesis that", factors, if(factors == 1) "factor is" else "factors are", "sufficient.\n") cat("The chi square statistic is", round(x$STATISTIC, 2), "on", x$dof, if(x$dof == 1) "degree" else "degrees", "of freedom.\nThe p-value is", signif(x$PVAL, 3), "\n") } else { cat(paste("\nThe degrees of freedom for the model is", x$dof, "and the fit was", round(x$criteria["objective"], 4), "\n")) } invisible(x) } varimax <- function(x, normalize = TRUE, eps = 1e-5) { nc <- ncol(x) if(nc < 2) return(x) if(normalize) { sc <- sqrt(drop(apply(x, 1, function(x) sum(x^2)))) x <- x/sc } p <- nrow(x) TT <- diag(nc) d <- 0 for(i in 1:1000) { z <- x %*% TT B <- t(x) %*% (z^3 - z %*% diag(drop(rep(1, p) %*% z^2))/p) sB <- La.svd(B) TT <- sB$u %*% sB$vt dpast <- d d <- sum(sB$d) if(d < dpast * (1 + eps)) break } z <- x %*% TT if(normalize) z <- z * sc dimnames(z) <- dimnames(x) class(z) <- "loadings" list(loadings = z, rotmat = TT) } promax <- function(x, m = 4) { if(ncol(x) < 2) return(x) dn <- dimnames(x) xx <- varimax(x) x <- xx$loadings Q <- x * abs(x)^(m-1) U <- lm.fit(x, Q)$coefficients d <- diag(solve(t(U) %*% U)) U <- U %*% diag(sqrt(d)) dimnames(U) <- NULL z <- x %*% U U <- xx$rotmat %*% U dimnames(z) <- dn class(z) <- "loadings" list(loadings = z, rotmat = U) }