[[ this has first bounced to me as 'list-manager', because the
subject said ``Returned mail: User unknown''
Paul, I assume you'd approve the subject I've chosen...
-- Martin M
]]
hi
for those who are interested ...
the following is a LaTeX document which describes the current state of
mathematical expression syntax in R
paul
------CUT HERE---------------------------------------------
\documentstyle{article}
\begin{document}
\section*{Documentation for \\
Mathematical Annotation in $R$}
If the {\tt text} argument to one of the text-drawing functions ({\tt
text}, {\tt mtext}, {\tt axis}) in $R$ is an expression, the argument
is interpreted as a mathematical expression and the output will be
formatted according to \TeX -like rules.
A mathematical expression must obey the normal rules of syntax for
any $R$ expression, but it is interpreted according to very
different rules than for normal $R$ expressions.
\begin{description}
\item[binary operators] addition, subtraction, multiplication, and
division use the standard $R$ syntax, although multiplication only
juxtaposes the arguments. For example, {\tt a+b}, {\tt a-b}, and {\tt
a/b}, produce $a+b$, $a-b$, and $a/b$, but {\tt a*b} produces $ab$.
\item[unary operators] positive and negative numbers are specified
with standard syntax. For example, {\tt +x} produces $+x$ and {\tt
-y} produces $-y$.
\item[subscripts and superscripts] a subscript is specified
using the subsetting syntax and a superscript is specified using
the power syntax. For example, {\tt x[i]} produces
$x_i$ and {\tt x\^{}2} produces $x^2$.
\item[accents] accented expressions are specified using the special
mathematical functions {\tt hat} and {\tt bar}. For example, {\tt
hat(x)} produces $\hat x$ and {\tt bar(x)} produces $\bar x$.
\item[fractions] fractions are specified using the special
mathematical function {\tt over}. For example, {\tt over(1,2)}
produces $1\over2$.
\item[relations] equality or assignment of terms is specified using
the {\tt ==} relation. For example, {\tt x == y} produces $x=y$.
\item[visible grouping] terms are visibly grouped by placing them
within parentheses. For example, {\tt (x+y)} produces $(x+y)$.
\item[invisible grouping] terms are invisibly grouped by placing
them within curly braces. For example {\tt x\^{}\{2*y\}} produces
$x^{2y}$, whereas {\tt x\^{}2*y} produces $x^2y$.
\item[big operators] a sum, product, or integral is specified using
the special mathematical function of the corresponding name. Each
of these functions takes three arguments; the first indicates what
is being summed/multiplied/integrated and the second and third specify
the limits of the summation/product/integral. For example, {\tt
sum(x[i], i==0, n)} produces $\sum\limits_{i=0}^n x_i$.
\item[radicals] a square root expression is specified using the
special mathematical functions {\tt root} and {\tt sqrt}. For
example, {\tt sqrt(x)} produces $\sqrt x$.
\item[absolute values] an absolute term is specified using the
special mathematical function {\tt abs}. For example, {\tt abs(x)}
produces $\left|x\right|$.
\item[juxtaposition] multiple terms are juxtaposed using the special
mathematical function {\tt paste}. For example, {\tt paste(over(b,
2), y, sum(x))} produces ${b\over2} y \sum x$.
\item[typeface changes] the default font in mathematical expressions
is italic (except for terms which are symbols). A new typeface is
specified using the special mathematical functions {\tt bold}, {\tt
italic}, {\tt plain}, and {\tt bolditalic}. For example, {\tt
plain(X)[i]} produces ${\rm X}_i$. These font specifications do not
accumulate (i.e., {\tt bold(italic(x)))} produces $x$ (an italic
"x"),
whereas {\tt bolditalic(x)} produces \textit{\textbf{x}} (a bold, italic
"x").
\item[general expressions] any functional expression which is not a
special mathematical function is simply reproduced as a function
expression. For example, {\tt foo(x)} produces $foo(x)$.
\end{description}
\end{document}
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
r-devel mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html
Send "info", "help", or "[un]subscribe"
(in the "body", not the subject !) To:
r-devel-request@stat.math.ethz.ch
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-