Hi William/ Mark,
I am using WOE & IV (weight of evidence) reduce the number of independent
vars.
I have read this data as a csv file.
reproducible example for your reference please:
structure(list(date = structure(c(6L, 6L, 6L, 6L, 6L, 6L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
30L, 30L, 30L, 30L), .Label = c("01-02-2016", "01-03-2016",
"01-04-2016",
"01-05-2016", "01-06-2016", "01-11-2015",
"01-12-2015", "02-01-2016",
"02-02-2016", "02-03-2016", "02-04-2016",
"02-05-2016", "02-06-2016",
"02-11-2015", "02-12-2015", "03-01-2016",
"03-02-2016", "03-03-2016",
"03-04-2016", "03-05-2016", "03-06-2016",
"03-11-2015", "03-12-2015",
"04-01-2016", "04-02-2016", "04-03-2016",
"04-04-2016", "04-05-2016",
"04-06-2016", "04-11-2015", "04-12-2015",
"05-01-2016", "05-02-2016",
"05-03-2016", "05-04-2016", "05-05-2016",
"05-06-2016", "05-11-2015",
"05-12-2015", "06-01-2016", "06-02-2016",
"06-03-2016", "06-04-2016",
"06-05-2016", "06-06-2016", "06-11-2015",
"06-12-2015", "07-01-2016",
"07-02-2016", "07-03-2016", "07-04-2016",
"07-05-2016", "07-06-2016",
"07-11-2015", "07-12-2015", "08-01-2016",
"08-02-2016", "08-03-2016",
"08-04-2016", "08-05-2016", "08-06-2016",
"08-11-2015", "08-12-2015",
"09-01-2016", "09-02-2016", "09-03-2016",
"09-04-2016", "09-05-2016",
"09-06-2016", "09-11-2015", "09-12-2015",
"10-01-2016", "10-02-2016",
"10-03-2016", "10-04-2016", "10-05-2016",
"10-06-2016", "10-11-2015",
"10-12-2015", "11-01-2016", "11-02-2016",
"11-03-2016", "11-04-2016",
"11-05-2016", "11-11-2015", "11-12-2015",
"12-01-2016", "12-02-2016",
"12-04-2016", "12-05-2016", "12-06-2016",
"12-11-2015", "12-12-2015",
"13-01-2016", "13-02-2016", "13-03-2016",
"13-04-2016", "13-05-2016",
"13-06-2016", "13-11-2015", "13-12-2015",
"14-01-2016", "14-02-2016",
"14-03-2016", "14-04-2016", "14-05-2016",
"14-06-2016", "14-11-2015",
"14-12-2015", "15-01-2016", "15-02-2016",
"15-03-2016", "15-04-2016",
"15-05-2016", "15-06-2016", "15-11-2015",
"15-12-2015", "16-01-2016",
"16-02-2016", "16-03-2016", "16-04-2016",
"16-05-2016", "16-06-2016",
"16-11-2015", "16-12-2015", "17-01-2016",
"17-02-2016", "17-03-2016",
"17-04-2016", "17-05-2016", "17-06-2016",
"17-11-2015", "17-12-2015",
"18-01-2016", "18-02-2016", "18-03-2016",
"18-04-2016", "18-05-2016",
"18-06-2016", "18-11-2015", "18-12-2015",
"19-01-2016", "19-02-2016",
"19-03-2016", "19-04-2016", "19-05-2016",
"19-06-2016", "19-11-2015",
"19-12-2015", "20-01-2016", "20-03-2016",
"20-04-2016", "20-05-2016",
"20-06-2016", "20-11-2015", "20-12-2015",
"21-01-2016", "21-02-2016",
"21-03-2016", "21-04-2016", "21-05-2016",
"21-06-2016", "21-11-2015",
"21-12-2015", "22-01-2016", "22-02-2016",
"22-03-2016", "22-04-2016",
"22-05-2016", "22-06-2016", "22-11-2015",
"22-12-2015", "23-01-2016",
"23-02-2016", "23-03-2016", "23-04-2016",
"23-05-2016", "23-06-2016",
"23-11-2015", "23-12-2015", "24-01-2016",
"24-02-2016", "24-03-2016",
"24-04-2016", "24-05-2016", "24-06-2016",
"24-11-2015", "24-12-2015",
"25-01-2016", "25-02-2016", "25-03-2016",
"25-04-2016", "25-05-2016",
"25-06-2016", "25-11-2015", "25-12-2015",
"26-01-2016", "26-02-2016",
"26-03-2016", "26-04-2016", "26-05-2016",
"26-06-2016", "26-11-2015",
"27-01-2016", "27-02-2016", "27-03-2016",
"27-04-2016", "27-05-2016",
"27-06-2016", "27-11-2015", "27-12-2015",
"28-01-2016", "28-02-2016",
"28-03-2016", "28-04-2016", "28-05-2016",
"28-06-2016", "28-11-2015",
"28-12-2015", "29-01-2016", "29-02-2016",
"29-03-2016", "29-04-2016",
"29-05-2016", "29-06-2016", "29-11-2015",
"29-12-2015", "30-01-2016",
"30-03-2016", "30-04-2016", "30-05-2016",
"30-06-2016", "30-11-2015",
"30-12-2015", "31-01-2016", "31-03-2016",
"31-05-2016", "31-12-2015"
), class = "factor"), month = structure(c(8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L), .Label = c("Apr",
"Dec", "Feb", "Jan", "Jun",
"Mar", "May", "Nov"), class = "factor"),
day = c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L), agent = structure(c(30L, 203L,
191L, 127L, 114L, 170L, 41L, 79L, 173L, 247L, 26L, 247L,
23L, 145L, 280L, 101L, 130L, 173L, 62L, 217L, 145L, 140L,
251L, 115L, 62L, 233L, 254L, 85L, 245L, 203L, 174L, 30L,
247L, 238L, 41L, 242L, 267L, 62L, 43L, 127L, 163L, 217L,
275L, 105L, 79L, 191L, 110L, 86L, 247L, 23L), .Label = c("Aakash
Shivach",
"Aanchal Goel", "Abhishek Bisht", "Abhishek
Mudireddy", "Abhishek
Singh2",
"Adam Boyle", "Aditi Gogia", "Afsal Backer",
"Agam Sud",
"Aishwarya Ramisetti", "Ajay Gangavarapu", "Ajaz
Shaikh",
"Akash Chandra", "Akash Jaiswal", "Akhil
Jain", "Akhilesh Kumar",
"Akiko Ono", "Akiko Tanaka", "Akilesh
Mogulluri", "Akshi Bhutani",
"Alessandro Delgado", "Alex Rozenfeld", "Amarjeet
Kumar",
"Ambili Rasu (MCS)", "Ameeduddin Sheikh", "Amit
Singh", "Amritansh
Trivedi",
"Anand Vardhan", "Anil Kumar 2", "Anil
Pandey", "Anjali Thekkut",
"Ankit Kumar", "Ankit Sharma", "Ankita
Sharma", "Anne Margarette
Estipona",
"Anudeep Alapati", "Anuj Malik", "Anurag
Sharma", "Anurag Srivastava",
"Anurikt Wadhwa", "Arpit Agarwal", "Arvind
Kaushik", "Arvind
Yarlagadda",
"Ashish Kalra", "Ashish Pandey", "Ashish
Rana", "Ashish Sharma",
"Ashraf Ahmad", "Ashutosh Tripathi", "Ashwani
Mehra", "Atif Ansari",
"Ayush Gupta", "Ayush Rastogi", "Ayush Sodhi",
"Bharat Joshi",
"Bharath Kilaparthi", "Bharath Vankayala", "Brandon
Parker",
"Carla Franchini", "Celia Oliveira", "Cesar
Adames", "Chaten Raghav",
"Chelsea McKay", "Chris Andersen (MCS)", "Clinton
Harwood",
"Dan Gustafson", "Darlene Wright", "Daryl
Kurtz", "Dave Selisana",
"Dee (Daiichiro) Tanaka (MCS)", "Divyan Solanki",
"Efrilyn Tejano",
"Eric Cheong (MCS)", "Ganesh Malla", "Garrett
Surgeon", "Garvit
Talwar",
"Gauravsingh Pawar", "Gurjeet Singh", "Gursimran
Vohra",
"Guy Halperin", "Harsh Bahadur", "Harshit
Mishra", "Harshvardhan
Chauhan",
"Hector Tarrobago", "Himanshu Sharma", "Hiroyoshi
Iwakiri",
"Iskander Mukhamedgaliyev", "Jack Ziesing", "Jacobe
Bascuguin",
"Janani Rajasekaran", "Jasdeep Singh Talwar",
"Jason MacManiman",
"Jason R Lima", "Jayaprakash Narayan (MCS)", "Jen
McCarthy",
"Jewin Joy Dsilva", "Jitin Chopra", "John Alvin
Garlan",
"John Salvan Khattyan", "Jose Garcia (MCS)",
"Joshua Wilhelm",
"Juan Rodriguez", "K N Shashank", "Kalyani
Kota", "Kamakshi Nathan
Subbiah",
"Karthik Murari (MCS)", "Kartik Singhal",
"Katsuyuki Deguchi (MCS)",
"Kazuya Ouchi", "Kenji Mizutani", "Kenjiro
Hosomi", "Kenneth Hadley",
"Kenneth Scholz", "Kiran Vuppuluri (MCS)", "Komal
Gupta",
"Kothapalli Yaswanth", "Krishna Neelam", "Kuldeep
Negi",
"Lisly Matti", "Luis Fernando Russi", "Luke Walker
(MCS)",
"Lynne Ausejo", "Lynne Beckham", "Madhav
Prasad", "Maika Dela Cruz",
"Maki Matsumoto", "Manav Vatsyayana", "Mandeep
Singh", "Manish Shukla",
"Manmeet Singh", "Mari Delos Santos", "Mari Ganesan
Chandran",
"Maria Josel Arce", "Masakazu Furumi", "Masashi
Yanagisawa (MCS)",
"Mayur Jain", "Megha Malviya", "Mehdiimam
Khan", "Midori Yoshino",
"Mithilesh Singh", "Mohamad Hamdan", "Mohammad
Anis", "Moshin Pathan",
"Mudit Mudgal", "Nancy Bhagat", "Nancy
McGrew", "Nareshkumarmohan
Thirukkovaluru",
"Nayana Kadiyala(MCS)", "Neena Aggarwal", "Neeraj
Kumar",
"Neeraja Nagalla", "Neha Singh", "Nick
Martens", "Nikhil Srivastava",
"Nikita Singh", "Nikunj Gupta", "Nilima
Madala", "Nishant Chaudhary",
"Norihiko Kodama", "Pablo Alvarez (MCS)", "Padmaja
Matlaparti",
"Pallavi Sharma", "Panati Rusia", "Parinitha
Vedpathak",
"Patrick Roland Perete", "Paul Bryan Ballesteros",
"Piyush Chandani",
"Poornachander Chiliveri", "Pradeep Raju", "Pramod
Kumar",
"Praneeth Indraganti", "Pranuthi Vallam",
"Prasannta Dubey",
"Prashant Sharma", "Praveen Kandhagatla (MCS)",
"Praveen Yadav",
"Priya Adlakha", "Priyank Jain", "Priyanka
Kumari", "Priyush Jagadam",
"Pruthvi Lanke", "Pulkit Sharma", "Puneet
Gupta2", "Pushkar Diwedi",
"Pushpa Kodwani", "Rachit Joshi", "Raghav
Sahore", "Rahul Madhwani",
"Rahul Munot", "Raj Salvi", "Rajat Bansal",
"Rakshitha Rakshitha",
"Ramu Adep (MCS)", "Randi Wilson", "Rashmitha
Ramaraju (MCS)",
"Reddy Mallareddy", "Renu Adhikari", "Richard
Santin", "Ridhima
Bhatia",
"Rie Son", "Rindha Kundur", "Rishika
Bisariya", "Rishikant Dubey",
"Ritesh Jaiswal", "Ritesh Srivastava", "Rodrigo
Andrade",
"Ross O'Riordan", "Rupal Sachan", "Ryan
Klein", "Ryan Ruiz",
"Saihareesh Sapram", "Saikat Banerjee", "Samil
Gutierrez",
"Sangam Ravindhar (MCS)", "Sanjeev Soran",
"Sanpreet Saini",
"Sarfaraj Siddiqui", "Sarthak Sharma", "Satish
Alavarthi",
"Saurav Kumar", "Saurav Sundriyal", "Sean Flynn
(MCS)", "Sean Hurst",
"Shalu Gangwar", "Shashank Mehra", "Sheshant
Kashyap", "Shikha Raheja",
"Shivani Shukla", "Shivani Singh", "Shreekanth
Kyatsandra (MCS)",
"Shubham Rathore", "Shubham Sehgal", "Sibesh
Dash", "Simardeep Bindra",
"Sirdikchowdary Marella", "Sivani Mallamapalli",
"Somarani Kandar",
"Sonalianil Mahakalkar", "Sowmya Gupta", "Sri
Krishna Mantripragada",
"Srikanth Nelluri", "Sudha Kumari", "Sumit
Balouria", "Sumit Kumar",
"Sumuga Padman", "Swapnil Deshmukh", "Swapnil
Srivastav",
"Swapnil Srivastav2", "Swati Sharma", "Swetha Kiran
Nallamothu",
"Tajinder Singh", "Takahiro Mori", "Takeshi
Sato", "Tallam Venkatesh",
"Tanu Agarwal", "Tejashree Gosavi", "Thimmaiah
Vanganur",
"Tom Graves", "Toyokazu Nakao", "Tracy
Stinghen", "Tushar Samar",
"Tushar Uniyal", "Ujjwal Rawat", "Vaibhav
Goel", "Vaibhav Jain",
"Vaibhav Kaushik", "Vanathi Vijayakumar",
"Venkatesh Reddy Y",
"Vibhor Mundepi", "Vibin Davis", "Vikas
Kumar", "Vikash Ujjwal",
"Vikram Kumar Kondapaneni (MCS)", "Vikram Nanduri
(MCS)",
"Vineet Goel", "Vinita Mishra (MCS)", "Viswanath
Ronda",
"Vivek Nair", "Wayne Cordrey", "Yathish Nimbegondi
Shanmukhappa",
"Yatin Mahajan", "Yogesh Lal", "Yoji Taoka",
"Yoshiyuki Masuda (MCS)"
), class = "factor"), tenure = structure(c(6L, 1L, 3L, 2L,
1L, 1L, 6L, 2L, 2L, 1L, 1L, 1L, 6L, 3L, 1L, 1L, 2L, 2L, 2L,
3L, 3L, 2L, 2L, 6L, 2L, 2L, 6L, 2L, 3L, 1L, 3L, 6L, 1L, 3L,
6L, 1L, 1L, 2L, 3L, 2L, 3L, 3L, 3L, 1L, 2L, 3L, 1L, 1L, 1L,
6L), .Label = c("#N/A", "Expert", "Junior",
"Newbie A", "Newbie B",
"Senior"), class = "factor"), support_cat =
structure(c(10L,
1L, 2L, 1L, 15L, 6L, 6L, 2L, 6L, 1L, 2L, 3L, 6L, 1L, 1L,
6L, 1L, 1L, 1L, 1L, 1L, 1L, 18L, 1L, 18L, 1L, 1L, 1L, 1L,
1L, 1L, 18L, 1L, 6L, 18L, 18L, 1L, 1L, 1L, 15L, 1L, 1L, 18L,
18L, 1L, 1L, 12L, 11L, 6L, 1L), .Label = c("AMER",
"APAC",
"BypassTier1", "ByPassTier1", "BYPASSTIER1",
"EMEA", "Exception",
"Global", "GOVT", "HIPPA", "JP",
"JP MCS", "LACA", "LPL",
"MCS", "None", "Partner Developer",
"Special", "US only",
"US Only"), class = "factor"), region = structure(c(1L,
1L,
2L, 1L, 2L, 3L, 3L, 2L, 3L, 1L, 2L, 3L, 3L, 1L, 1L, 3L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L,
4L, 3L, 1L), .Label = c("AMER", "APAC",
"EMEA", "JP", "LACA",
"Unknown"), class = "factor"), support_lvl =
structure(c(2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L), .Label = c("Other", "Premier",
"Standard"
), class = "factor"), skill_group = structure(c(1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 1L), .Label = c("Developer", "Integration"), class =
"factor"),
application_area = structure(c(1L, 10L, 1L, 7L, 1L, 1L, 1L,
2L, 1L, 3L, 2L, 3L, 1L, 7L, 1L, 1L, 3L, 3L, 1L, 2L, 15L,
3L, 3L, 7L, 1L, 1L, 3L, 1L, 1L, 1L, 7L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 14L, 1L, 2L, 3L, 3L, 1L, 1L), .Label
c("Apex/API Development",
"API / Apex / Visualforce", "API Integration", "API
Tokens",
"Authentication", "CTI", "Deployment",
"Environment Hub",
"Flow", "Limit Changes", "Network and
Performance", "Other",
"Packaging and Deployment", "Sites & Community",
"SOQL / SOSL",
"Workflow Automation"), class = "factor"),
functional_area structure(c(63L,
36L, 5L, 26L, 5L, 56L, 5L, 4L, 35L, 66L, 4L, 55L, 5L, 26L,
5L, 63L, 8L, 8L, 5L, 63L, 59L, 34L, 1L, 17L, 5L, 5L, 50L,
63L, 5L, 5L, 26L, 5L, 5L, 63L, 5L, 5L, 5L, 5L, 5L, 35L, 5L,
5L, 5L, 35L, 5L, 4L, 57L, 57L, 5L, 5L), .Label = c("-",
"Account
Insights",
"Activation", "APEX", "Apex Code Development",
"Apex Data Loader",
"API", "API Performance", "API Token Issues",
"API Toolkit",
"Application Slowness", "Authentication", "Batch
Apex", "Browser
specific issue",
"Bulk API", "Canvas", "Change Sets",
"Chatter REST", "Communities &
Chatter",
"Community", "Connected Apps", "Database.com",
"Debug Log Size",
"Delagated SSO", "Delegated Authentication",
"Deployment -
ANT/IDE/Code",
"Development", "Domain Name Change", "Email",
"Feature Activation",
"Federated (SAML) SSO", "Flow Configuration", "Flow
Designer",
"Flow Development", "Force.com Sites", "Governor
Limits",
"IDE / ANT / Metadata API", "Identity Connect",
"Lightning Connect",
"Managed Package Namespaces", "Managed Packages",
"Mutual
Authentication",
"Network / ISP Latency", "Oauth", "Open CTI",
"Other", "Outbound
Messaging",
"Post Install Script", "Quick Deploy", "REST
API", "Salesforce
Maintenance",
"Salesforce1", "SAML", "Setup & Security",
"Single Sign On",
"Site.com", "SOAP API", "SOQL Performance",
"SOQL Queries",
"SOSL", "SSL Certificates", "Visual Process
Manager", "Visualforce",
"WDC1.0", "Workflow", "WSDL2 Apex"), class =
"factor"), score = c(9L,
10L, 2L, 10L, 10L, 2L, 8L, 10L, 10L, 10L, 10L, 10L, 10L,
2L, 10L, 4L, 4L, 10L, 9L, 10L, 10L, 10L, 10L, 5L, 9L, 10L,
8L, 10L, 10L, 10L, 10L, 10L, 10L, 1L, 9L, 8L, 10L, 10L, 10L,
10L, 9L, 10L, 10L, 10L, 9L, 10L, 8L, 8L, 10L, 9L), rep_score = c(9.5,
10, 2, 10, 10, 3.5, 7.5, 10, 10, 10, 10, 10, 10, 2, 10, 7.5,
6, 10, 9.5, 10, 9, 10, 10, 5.5, 9, 10, 8, 10, 10, 10, 10,
10, 9.5, 1.5, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 9.5,
10, 10, 8, 10, 10), product_know = structure(c(4L, 4L, 5L,
4L, 1L, 3L, 11L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 4L, 10L, 9L,
4L, 4L, 4L, 11L, 4L, 4L, 9L, 12L, 4L, 11L, 4L, 4L, 4L, 4L,
4L, 12L, 3L, 12L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 11L, 4L, 4L), .Label = c("-", "0",
"1", "10", "2",
"3", "4", "5", "6", "7",
"8", "9"), class = "factor"),
understanding_issue = structure(c(12L,
4L, 5L, 4L, 4L, 9L, 10L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 4L,
11L, 9L, 4L, 12L, 4L, 4L, 4L, 4L, 8L, 12L, 4L, 11L, 1L, 4L,
4L, 4L, 4L, 4L, 5L, 12L, 11L, 4L, 4L, 4L, 4L, 4L, 4L, 1L,
4L, 12L, 4L, 4L, 11L, 4L, 4L), .Label = c("-", "0",
"1",
"10", "2", "3", "4", "5",
"6", "7", "8", "9"), class =
"factor"),
case_age = c(24.84, 0.05, 13.38, 0.15, 11.11, 4.16, 8.13,
0.07, 3.61, 0, 3.11, 20.94, 0.21, 17.49, 1.11, 6.15, 4.32,
4.03, 0.08, 3.06, 4.74, 12.07, 4.79, 5.29, 0.21, 0.06, 3.95,
0.12, 7.27, 4.18, 2.49, 20.95, 0.15, 10.96, 6.99, 47.42,
4.96, 0.06, 4.92, 0.06, 6.84, 0.3, 0.01, 0.07, 15.74, 5.8,
2.85, 0.17, 16.02, 1.33), severity_level = structure(c(3L,
3L, 2L, 4L, 3L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 4L, 4L, 4L,
4L, 4L, 2L, 3L, 4L, 4L, 2L, 4L, 3L, 4L, 2L, 3L, 2L, 3L, 2L,
4L, 3L, 3L, 4L, 4L, 4L, 4L, 2L, 4L, 3L, 2L, 2L, 2L, 3L, 3L,
3L, 4L, 4L, 4L), .Label = c("Level 1 - Critical", "Level 2 -
Urgent",
"Level 3 - High", "Level 4 - Medium"), class =
"factor"),
case_status = structure(c(1L, 6L, 4L, 6L, 6L, 6L, 6L, 6L,
2L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 4L, 4L, 6L, 2L, 6L, 6L, 2L,
5L, 6L, 6L, 6L, 5L, 6L, 6L, 6L, 6L, 6L, 5L, 2L, 6L, 6L, 2L,
6L, 2L, 6L, 6L, 6L, 6L, 6L, 6L, 2L, 2L, 6L, 2L), .Label = c("Closed -
Bug Fix Submitted",
"Closed - Customer Closed", "Closed - Directed to
IdeaExchange",
"Closed - No response from customer", "Closed - Request out
of Scope",
"Closed - Resolved", "Closed - Routed to Internal
Helpdesk",
"Pending Customer Approval", "Working"), class =
"factor"),
account_segment = structure(c(3L, 8L, 4L, 3L, 9L, 3L, 4L,
4L, 8L, 9L, 1L, 4L, 3L, 3L, 3L, 9L, 4L, 3L, 9L, 3L, 3L, 3L,
9L, 3L, 9L, 8L, 9L, 8L, 8L, 2L, 8L, 9L, 4L, 8L, 9L, 2L, 3L,
3L, 3L, 9L, 8L, 3L, 9L, 9L, 4L, 4L, 9L, 3L, 9L, 4L), .Label =
c("-",
"Flagship", "Large", "Medium",
"Mega", "N/A", "Platinum",
"Small", "Top", "Very Small"), class =
"factor"), sla_status structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L), .Label = c("Met", "Missed",
"N/A", "Pending"
), class = "factor"), delivery_segmentation = structure(c(31L,
31L, 31L, 31L, 10L, 26L, 31L, 31L, 31L, 31L, 25L, 31L, 31L,
31L, 24L, 8L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L,
31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 28L, 24L,
31L, 31L, 31L, 31L, 31L, 31L, 5L, 31L, 31L, 32L, 33L, 31L,
31L), .Label = c("-", "AMER - IND - T3", "AMER Dev
Port",
"AMER Mission Critical Success (MCS)", "AMER Tier 2
Port",
"AMER Tier 3 Port", "AMER TS Tier 2", "AMER TS Tier
2 DEV",
"AMER TS Tier 3", "APAC Mission Critical Success (MCS)",
"APAC TS Tier 2", "COGZ DESM Admin", "COGZ DESM
Tier 2",
"COGZ MANL Tier 1", "COGZ MANL Tier 2", "COGZ PUNE
Admin",
"COGZ PUNE Tier 1", "EMEA Mission Critical Success
(MCS)",
"EMEA Premier T2", "EMEA TS Tier 2 DEV", "EMEA TS
Tier 3",
"HCL MANL Tier 1", "HCL MANL Tier 2", "HYDR AMER TS
Tier 2 DEV",
"HYDR APAC TS Tier 2 DEV", "HYDR EMEA TS Tier 2 DEV",
"HYDR Premier
Internal Admin APAC",
"HYDR Premier Internal Tier 2 AMER", "HYDR Premier Internal
Tier 2
APAC",
"HYDR Premier Internal Tier 2 EMEA", "India TS Tier 2 Dev
Outsource",
"Japan Premier Internal Tier 2 (PSA)", "Japan TS Tier
1",
"Japan TS Tier 2 Internal", "Japan TS Tier 3", "JP
Mission Critical
Success (MCS)",
"Partner - Internal"), class = "factor"), survey = c(1,
1,
0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1,
1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 0, 1, 1), repS = c(1, 1, 0, 1, 1, 0,
0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1,
1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 1, 1), log_caseage = c(3.2519236789144, 0.048790164169432,
2.6658383522929, 0.139761942375159, 2.494031557565, 1.64093657949347,
2.21156569460688, 0.0676586484738148, 1.52822785700856, 0,
1.41342302850814, 3.08831145484708, 0.19062035960865, 2.91723004539903,
0.746687947487975, 1.96711235670592, 1.67147330335355,
1.61541998411165,
0.0769610411361283, 1.40118297361364, 1.74745921033147,
2.57031952763613,
1.7561322915849, 1.83896107071235, 0.19062035960865,
0.0582689081239758,
1.5993875765806, 0.113328685307003, 2.1126345090356, 1.64480505627139,
1.24990173621434, 3.08876713952118, 0.139761942375159,
2.48156774852249,
2.07819075977818, 3.87991295150991, 1.78507048107726,
0.0582689081239758,
1.77833644889591, 0.0582689081239758, 2.05923883436232,
0.262364264467491,
0.00995033085316808, 0.0676586484738148, 2.81780106506133,
1.91692261218206, 1.34807314829969, 0.157003748809665,
2.83438912314523,
0.845868267577609)), .Names = c("date", "month",
"day", "agent",
"tenure", "support_cat", "region",
"support_lvl", "skill_group",
"application_area", "functional_area", "score",
"rep_score",
"product_know", "understanding_issue", "case_age",
"severity_level",
"case_status", "account_segment", "sla_status",
"delivery_segmentation",
"survey", "repS", "log_caseage"), row.names =
c(NA, 50L), class "data.frame")
On Tue, Aug 30, 2016 at 10:30 PM, William Dunlap <wdunlap at tibco.com>
wrote:
> You did not say what operation gave you the error.
>
> I can get that message (which is not an "error") if I print
> an illegally constructed data.frame, one without the
> row.names attribute.
>
> > illegalDF <- structure(class="data.frame", list(ColumnA =
1:3))
> > illegalDF
> [1] ColumnA
> <0 rows> (or 0-length row.names)
> > str(illegalDF)
> 'data.frame': 0 obs. of 1 variable:
> $ ColumnA: int 1 2 3
>
> Note how str() of the entire data.frame indirectly informs you of the
> problem: the number of observations does not match the length of the
> columns.
>
> How did you make the data.frame?
>
>
>
> Bill Dunlap
> TIBCO Software
> wdunlap tibco.com
>
> On Tue, Aug 30, 2016 at 9:24 AM, Shivi Bhatia <shivipmp82 at
gmail.com>
> wrote:
>
>> I know this question has been asked zillion times but even after
>> consulting
>> Stack Overflow & other forum cant figure out the reason.
>>
>> I have one var in my data-set names case age. This variable is numeric
as:
>>
>> class(SFDC$case_age)
>>
>> *numeric*
>>
>> however it throws this error:
>>
>> <0 rows> (or 0-length row.names)
>> As checked this only happens either there is some space at the end of
the
>> variable name, or there are no values whereas this is a numeric
variable
>> with no missing values and has a total of 5400 observations.
>>
>> This var has a range from 0 to 240 in number of days for case variable
>> hence i need to do a logarithm transformation & make it use in the
model.
>> Total unique obs are around 1500.
>>
>> Please advice.
>>
>> [[alternative HTML version deleted]]
>>
>> ______________________________________________
>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide http://www.R-project.org/posti
>> ng-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
>>
>
>
[[alternative HTML version deleted]]