BARLAS Marios 247554
2016-Jul-24 21:11 UTC
[R] Create a colour scale for different data sets
Hello Every1, I'm working on analysing some data and I want to make some cartography maps. Since I treat data in batch, I need to have a common reference colour scale for all the datasets I need to plot. This is important otherwise it becomes hard to quickly assert visually changes from one experiment to another if the colour scale resets all the time. So I though of finding the min and max value of my data values and create a colour scale versus that. Nonetheless the code does not work as intended, I realised my code was not easily reproducible so I send some with initialized values to help :) Here is a part of the code (reproducible): meas.data <- c( 2.38762e+02, 2.54709e+02, 2.45204e+02, 2.32134e+02, 2.28587e+02, 2.31493e+02, 2.34867e+02, 2.41127e+02, 2.76113e+02, 2.57450e+02, 2.23804e+02, 2.39064e+02, 2.28636e+02, 2.37417e+02, 2.53686e+02, 2.45593e+02, 2.29043e+02, 9.25698e+10, 2.31001e+02, 2.36022e+02, 2.67654e+02, 2.50275e+02, 2.72641e+02, 2.24342e+02, 9.36361e+10, 2.28610e+02, 2.20854e+02, 2.37955e+02, 2.58944e+02, 2.68088e+02, 2.36356e+02, 2.52802e+02, 2.32976e+02, 2.39819e+02, 2.48820e+02, 2.80206e+02, 2.63318e+02, 2.43431e+02, 2.83426e+02, 2.48557e+02, 2.45493e+02, 2.53264e+02, 2.51834e+02, 2.34187e+02, 2.56326e+02, 2.96419e+02, 2.52473e+02, 2.68144e+02, 2.40842e+02) die.codes <- c("X5_Y4" , "X5_Y6" , "X5_Y8" , "X5_Y9", "X5_Y10", "X5_Y11", "X5_Y12", "X7_Y4", "X7_Y6", "X7_Y8", "X7_Y9", "X7_Y10", "X7_Y11", "X7_Y12", "X9_Y4", "X9_Y6", "X9_Y8", "X9_Y9", "X9_Y10", "X9_Y11", "X9_Y12", "X11_Y4", "X11_Y6", "X11_Y8", "X11_Y9", "X11_Y10", "X11_Y11", "X11_Y12", "X13_Y4", "X13_Y6", "X13_Y8", "X13_Y9", "X13_Y10", "X13_Y11", "X13_Y12", "X15_Y4", "X15_Y6", "X15_Y8", "X15_Y9", "X15_Y10", "X15_Y11", "X15_Y12", "X17_Y4", "X17_Y6", "X17_Y8" ,"X17_Y9", "X17_Y10", "X17_Y11", "X17_Y12") dies.x.total <- 17 dies.y.total <- 15 r.max <- 1e13 dies.in.wafer <- expand.grid(X=as.numeric(1:dies.x.total), Y=as.numeric(1:dies.y.total)) # This procedure can be used to generate the patterns for the test labels as well. To be Tested and verified. # Catch all numerical values in the string # 4 Is the column for which the names of the die coordinates are stored dies.tested <-strsplit(die.codes, "[^[:digit:]]") # Convert to Numeric dies.tested<- lapply(dies.tested,as.numeric ) dies.tested<- data.frame((matrix(unlist(dies.tested), ncol = dim.data.frame(dies.tested[[1]])[2], byrow = TRUE))) # Drop all Columns containing NAs dies.tested <- dies.tested[colSums(!is.na(dies.tested)) > 0] dies.tested$test.order <- as.factor(1:dim.data.frame(dies.tested)[1]) colnames(dies.tested) <- c("X","Y","Order") dies.in.wafer.x <- dies.in.wafer$X dies.in.wafer.y <- dies.in.wafer$Y dies.in.wafer.tested <- rep(F, length = dim.data.frame(dies.in.wafer)[1]) dies.in.wafer.Order = rep(NA, length = dim.data.frame(dies.in.wafer)[1]) dies.in.wafer.r = rep(NA, length = dim.data.frame(dies.in.wafer)[1]) dies.in.wafer.op = rep(NA, length = dim.data.frame(dies.in.wafer)[1]) dies.tested.x <- dies.tested$X dies.tested.y <- dies.tested$Y dies.tested.order<- dies.tested$Order dim.dies.in.wafer <- dim(dies.in.wafer)[1] for(ixx in seq(1, dim(dies.tested)[1], by=1) ){ for (inn in seq(1, dim.dies.in.wafer, by=1) ){ if (dies.in.wafer.tested[inn]==F) { dies.in.wafer.tested[inn] <- dies.tested.x[ixx] == dies.in.wafer.x[inn] & dies.tested.y[ixx] == dies.in.wafer.y[inn] if (dies.in.wafer.tested[inn]==T) { dies.in.wafer.Order[inn] <- dies.tested$Order[ixx] dies.in.wafer.r[inn] <- meas.data dies.in.wafer.op[inn] <- op.type } } } } dies.in.wafer$tested <- dies.in.wafer.tested dies.in.wafer$Order <- dies.in.wafer.Order dies.in.wafer$op.type <- as.factor(dies.in.wafer.op) dies.in.wafer$R <- dies.in.wafer.r r.colour.map <- c("lightgreen", "darkgreen", "yellow","red" ) r.range.breaks <- c(0, 1.5e4, 1e5, r.max )/r.max r.breaks.guide <- c(0, 1.5e4, 1e5, r.max ) g.map <- ggplot(dies.in.wafer, aes(X, Y)) + geom_raster(aes(fill = R))+ scale_fill_gradientn(name="R", na.value = "grey50", colours = r.colour.map, values = r.range.breaks, breaks=r.breaks.guide, limits=c(0,r.max) ) g.map