On 12/31/2014 12:22 AM, Karim Mezhoud wrote:> Thanks, > It seems for loop spends less time ;) > > with > dim(DataFrame) > [1] 338 70 > > For loop has > user system elapsed > 0.012 0.000 0.012 > > and apply has > user system elapsed > 0.020 0.000 0.021The timings are so short that the answer in terms of speed is 'it does not matter'. Here is a selection of approaches f0 <- function(df) { for (i in seq_along(df)) df[,i] <- as.numeric(df[,i]) df } f0a <- function(df) { ## data.frame is a list-of-equal-length vectors; access each ## column with "[[" for (i in seq_along(df)) df[[i]] <- as.numeric(df[[i]]) df } f0c <- compiler::cmpfun(f0) ## loops sometimes benefit from compilation f1 <- function(df) as.data.frame(apply(df, 2, as.numeric)) f2 <- function(df) { ## replace all columns of df with list-of-vectors df[] <- lapply(df, as.numeric) df } f3 <- function(df) { ## coerce to matrix to avoid the explicit loop, use mode<- to ## change storage of elements m <- as.matrix(df) mode(m) <- "numeric" as.data.frame(m) } f4 <- function(df) { ## if it's a matrix, why are we returning a data.frame? m <- as.matrix(df) mode(m) <- "numeric" m } f4a <- function(df) ## unlist to single vector, coerce, then format as matrix matrix(as.numeric(unlist(df, use.names=FALSE)), nrow(df), dimnames=dimnames(df)) It's important to test that different methods return the same result (perhaps allowing for differences in attributes such as row or column names). The microbenchmark package repeats timings across multiple trials (default 100 times). library(microbenchmark) test <- function(df) { stopifnot( identical(f0(df), f0a(df)), identical(f0(df), f0c(df)), identical(f0(df), f1(df)), identical(f0(df), f2(df)), identical(f0(df), f3(df)), identical(as.matrix(f0(df)), f4(df)), all.equal(f4(df), f4a(df), check.attributes=FALSE)) microbenchmark(f0(df), f0a(df), f1(df), f2(df), f3(df), f4(df), f4a(df)) } Here are some data sets m <- matrix(rnorm(338 * 70), 338) df <- as.data.frame(m) dfc <- as.data.frame(lapply(df, as.character), stringsAsFactors=FALSE) dff <- as.data.frame(lapply(df, as.character)) and results > test(df) Unit: microseconds expr min lq mean median uq max neval f0(df) 6208.956 6270.5500 6367.4138 6306.7110 6362.2225 7731.281 100 f0a(df) 2917.973 2975.2090 3024.8623 3002.3805 3036.5365 3951.618 100 f0c(df) 6078.399 6150.1085 6264.0998 6188.3690 6244.5725 7684.116 100 f1(df) 2698.074 2743.2905 2821.8453 2769.3655 2805.5345 4033.229 100 f2(df) 1989.057 2041.0685 2066.1830 2055.0020 2083.8545 2267.732 100 f3(df) 1532.435 1572.9810 1609.7378 1597.6245 1624.2305 2003.584 100 f4(df) 808.593 828.5445 852.2626 847.5355 864.6665 1180.977 100 f4a(df) 422.657 437.2705 458.9845 455.2470 465.5815 695.443 100 > test(dfc) Unit: milliseconds expr min lq mean median uq max neval f0(df) 11.416532 11.647858 11.915287 11.767647 12.016276 14.239622 100 f0a(df) 8.095709 8.211116 8.380638 8.289895 8.454948 9.529026 100 f0c(df) 11.339293 11.577811 11.772087 11.702341 11.896729 12.674766 100 f1(df) 8.227371 8.277147 8.422412 8.331403 8.490411 9.145499 100 f2(df) 6.907888 7.010828 7.162529 7.147198 7.239048 7.763758 100 f3(df) 6.608107 6.688232 6.845936 6.792066 6.892635 8.359274 100 f4(df) 5.859482 5.939680 6.046976 5.993804 6.105388 6.968601 100 f4a(df) 5.372214 5.460987 5.556687 5.521542 5.614482 6.107081 100 > test(dff) Error: identical(f0(df), f1(df)) is not TRUE Except when dealing with factors, the use of explicit loops is the slowest. With factors, matrix-based methods coerce the level labels to numeric, whereas vector-based methods coerce the underlying codes (level values) of the factor; obviously great care needs to be taken. > f0(dff)[1:5, 1:5] V1 V2 V3 V4 V5 1 150 232 294 88 56 2 159 8 89 59 10 3 132 171 40 205 119 4 214 273 26 262 216 5 281 49 255 31 233 > f1(dff)[1:5, 1:5] V1 V2 V3 V4 V5 1 -1.7092463 0.50234009 0.8492982 -0.5636901 -0.38545566 2 -2.3020854 -0.05580931 -0.5963673 -0.3671748 -0.09408031 3 -1.2915110 -2.46181533 -0.2470108 0.3301129 -1.06810225 4 0.3065989 0.89263099 -0.1717432 0.7721411 0.35856334 5 0.8795616 -0.43049898 0.4560515 -0.1722099 0.46125149 In terms of 'best practice', I would represent my data in the appropriate data structure in the first place (as a matrix of appropriate type, rather than data.frame, so the entire coercion is irrelevant). If faced with a data.frame with specific columns to coerce I would use the approach cidx <- sapply(df, is.character) # index of columns to coerce df[cidx] <- lapply(df[cidx], as.numeric) which seems to be reasonably correct, expressive, compact, and speedy. Martin Morgan> > ?__ > c/ /'_;~~~~kmezhoud > (*) \(*) ????? ?????? > http://bioinformatics.tn/ > > > > On Wed, Dec 31, 2014 at 8:54 AM, Berend Hasselman <bhh at xs4all.nl> wrote: > >> >>> On 31-12-2014, at 08:40, Karim Mezhoud <kmezhoud at gmail.com> wrote: >>> >>> Hi All, >>> I would like to choice between these two data frame convert. which is >>> faster? >>> >>> for(i in 1:ncol(DataFrame)){ >>> >>> DataFrame[,i] <- as.numeric(DataFrame[,i]) >>> } >>> >>> >>> OR >>> >>> DataFrame <- as.data.frame(apply(DataFrame,2 ,function(x) as.numeric(x))) >>> >>> >> >> Try it and use system.time. >> >> Berend >> >>> Thanks >>> Karim >>> ?__ >>> c/ /'_;~~~~kmezhoud >>> (*) \(*) ????? ?????? >>> http://bioinformatics.tn/ >>> >>> [[alternative HTML version deleted]] >>> >>> ______________________________________________ >>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>> https://stat.ethz.ch/mailman/listinfo/r-help >>> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >>> and provide commented, minimal, self-contained, reproducible code. >> >> > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >-- Computational Biology / Fred Hutchinson Cancer Research Center 1100 Fairview Ave. N. PO Box 19024 Seattle, WA 98109 Location: Arnold Building M1 B861 Phone: (206) 667-2793
Many Many Many thanks! it is a demonstrative lesson. I need time to test all examples :) Thank you for your time and support. Happy and Healthy New Year ?__ c/ /'_;~~~~kmezhoud (*) \(*) ????? ?????? http://bioinformatics.tn/ On Wed, Dec 31, 2014 at 2:38 PM, Martin Morgan <mtmorgan at fredhutch.org> wrote:> On 12/31/2014 12:22 AM, Karim Mezhoud wrote: > >> Thanks, >> It seems for loop spends less time ;) >> >> with >> dim(DataFrame) >> [1] 338 70 >> >> For loop has >> user system elapsed >> 0.012 0.000 0.012 >> >> and apply has >> user system elapsed >> 0.020 0.000 0.021 >> > > The timings are so short that the answer in terms of speed is 'it does not > matter'. > > Here is a selection of approaches > > f0 <- function(df) { > for (i in seq_along(df)) > df[,i] <- as.numeric(df[,i]) > df > } > > f0a <- function(df) { > ## data.frame is a list-of-equal-length vectors; access each > ## column with "[[" > for (i in seq_along(df)) > df[[i]] <- as.numeric(df[[i]]) > df > } > > f0c <- compiler::cmpfun(f0) ## loops sometimes benefit from compilation > > f1 <- function(df) > as.data.frame(apply(df, 2, as.numeric)) > > f2 <- function(df) { > ## replace all columns of df with list-of-vectors > df[] <- lapply(df, as.numeric) > df > } > > f3 <- function(df) { > ## coerce to matrix to avoid the explicit loop, use mode<- to > ## change storage of elements > m <- as.matrix(df) > mode(m) <- "numeric" > as.data.frame(m) > } > > f4 <- function(df) { > ## if it's a matrix, why are we returning a data.frame? > m <- as.matrix(df) > mode(m) <- "numeric" > m > } > > f4a <- function(df) > ## unlist to single vector, coerce, then format as matrix > matrix(as.numeric(unlist(df, use.names=FALSE)), nrow(df), > dimnames=dimnames(df)) > > It's important to test that different methods return the same result > (perhaps allowing for differences in attributes such as row or column > names). The microbenchmark package repeats timings across multiple trials > (default 100 times). > > library(microbenchmark) > test <- function(df) { > stopifnot( > identical(f0(df), f0a(df)), > identical(f0(df), f0c(df)), > identical(f0(df), f1(df)), > identical(f0(df), f2(df)), > identical(f0(df), f3(df)), > identical(as.matrix(f0(df)), f4(df)), > all.equal(f4(df), f4a(df), check.attributes=FALSE)) > microbenchmark(f0(df), f0a(df), f1(df), f2(df), f3(df), f4(df), > f4a(df)) > } > > Here are some data sets > > m <- matrix(rnorm(338 * 70), 338) > df <- as.data.frame(m) > dfc <- as.data.frame(lapply(df, as.character), stringsAsFactors=FALSE) > dff <- as.data.frame(lapply(df, as.character)) > > and results > > > test(df) > Unit: microseconds > expr min lq mean median uq max neval > f0(df) 6208.956 6270.5500 6367.4138 6306.7110 6362.2225 7731.281 100 > f0a(df) 2917.973 2975.2090 3024.8623 3002.3805 3036.5365 3951.618 100 > f0c(df) 6078.399 6150.1085 6264.0998 6188.3690 6244.5725 7684.116 100 > f1(df) 2698.074 2743.2905 2821.8453 2769.3655 2805.5345 4033.229 100 > f2(df) 1989.057 2041.0685 2066.1830 2055.0020 2083.8545 2267.732 100 > f3(df) 1532.435 1572.9810 1609.7378 1597.6245 1624.2305 2003.584 100 > f4(df) 808.593 828.5445 852.2626 847.5355 864.6665 1180.977 100 > f4a(df) 422.657 437.2705 458.9845 455.2470 465.5815 695.443 100 > > test(dfc) > Unit: milliseconds > expr min lq mean median uq max neval > f0(df) 11.416532 11.647858 11.915287 11.767647 12.016276 14.239622 100 > f0a(df) 8.095709 8.211116 8.380638 8.289895 8.454948 9.529026 100 > f0c(df) 11.339293 11.577811 11.772087 11.702341 11.896729 12.674766 100 > f1(df) 8.227371 8.277147 8.422412 8.331403 8.490411 9.145499 100 > f2(df) 6.907888 7.010828 7.162529 7.147198 7.239048 7.763758 100 > f3(df) 6.608107 6.688232 6.845936 6.792066 6.892635 8.359274 100 > f4(df) 5.859482 5.939680 6.046976 5.993804 6.105388 6.968601 100 > f4a(df) 5.372214 5.460987 5.556687 5.521542 5.614482 6.107081 100 > > test(dff) > Error: identical(f0(df), f1(df)) is not TRUE > > Except when dealing with factors, the use of explicit loops is the > slowest. With factors, matrix-based methods coerce the level labels to > numeric, whereas vector-based methods coerce the underlying codes (level > values) of the factor; obviously great care needs to be taken. > > > f0(dff)[1:5, 1:5] > V1 V2 V3 V4 V5 > 1 150 232 294 88 56 > 2 159 8 89 59 10 > 3 132 171 40 205 119 > 4 214 273 26 262 216 > 5 281 49 255 31 233 > > f1(dff)[1:5, 1:5] > V1 V2 V3 V4 V5 > 1 -1.7092463 0.50234009 0.8492982 -0.5636901 -0.38545566 > 2 -2.3020854 -0.05580931 -0.5963673 -0.3671748 -0.09408031 > 3 -1.2915110 -2.46181533 -0.2470108 0.3301129 -1.06810225 > 4 0.3065989 0.89263099 -0.1717432 0.7721411 0.35856334 > 5 0.8795616 -0.43049898 0.4560515 -0.1722099 0.46125149 > > In terms of 'best practice', I would represent my data in the appropriate > data structure in the first place (as a matrix of appropriate type, rather > than data.frame, so the entire coercion is irrelevant). If faced with a > data.frame with specific columns to coerce I would use the approach > > cidx <- sapply(df, is.character) # index of columns to coerce > df[cidx] <- lapply(df[cidx], as.numeric) > > which seems to be reasonably correct, expressive, compact, and speedy. > > Martin Morgan > > > >> ?__ >> c/ /'_;~~~~kmezhoud >> (*) \(*) ????? ?????? >> http://bioinformatics.tn/ >> >> >> >> On Wed, Dec 31, 2014 at 8:54 AM, Berend Hasselman <bhh at xs4all.nl> wrote: >> >> >>> On 31-12-2014, at 08:40, Karim Mezhoud <kmezhoud at gmail.com> wrote: >>>> >>>> Hi All, >>>> I would like to choice between these two data frame convert. which is >>>> faster? >>>> >>>> for(i in 1:ncol(DataFrame)){ >>>> >>>> DataFrame[,i] <- as.numeric(DataFrame[,i]) >>>> } >>>> >>>> >>>> OR >>>> >>>> DataFrame <- as.data.frame(apply(DataFrame,2 ,function(x) >>>> as.numeric(x))) >>>> >>>> >>>> >>> Try it and use system.time. >>> >>> Berend >>> >>> Thanks >>>> Karim >>>> ?__ >>>> c/ /'_;~~~~kmezhoud >>>> (*) \(*) ????? ?????? >>>> http://bioinformatics.tn/ >>>> >>>> [[alternative HTML version deleted]] >>>> >>>> ______________________________________________ >>>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>>> https://stat.ethz.ch/mailman/listinfo/r-help >>>> PLEASE do read the posting guide >>>> >>> http://www.R-project.org/posting-guide.html >>> >>>> and provide commented, minimal, self-contained, reproducible code. >>>> >>> >>> >>> >> [[alternative HTML version deleted]] >> >> ______________________________________________ >> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide http://www.R-project.org/ >> posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. >> >> > > -- > Computational Biology / Fred Hutchinson Cancer Research Center > 1100 Fairview Ave. N. > PO Box 19024 Seattle, WA 98109 > > Location: Arnold Building M1 B861 > Phone: (206) 667-2793 >[[alternative HTML version deleted]]
Concretely I request cbioportal through cgsdr package. Depending of Cases and Genetic profiles I receive in general data.frame with heterogeneous structure. The bad one if the returned data.frame is composed by numeric and character columns. in this case numeric columns are considered as factor. It is the case when I explore/extract information from Clinical Data (Age, gender., tumor stage..). In this case I need to convert only numeric column and not character ones. I am using grep("[0-9]*.[0-9]*",df[,i])!=0 {fun to convert}. But this heterogeneity comes even with only supposed numeric data.frame (gene expression). here an example library(cgdsr) GeneList <- c("DDR2", "HPGDS", "MS4A2","SSUH2","MLH1" ,"MSH2", "ATM" ,"ATR", "MDC1" ,"PARP1") cgds<-CGDS("http://www.cbioportal.org/public-portal/") str(getProfileData(cgds,GeneList, "stad_tcga_methylation_hm27","stad_tcga_methylation_hm27")) str(getProfileData(cgds,GeneList, "stad_tcga_methylation_hm450","stad_tcga_methylation_hm450")) With my computer I did not find the same structure (numeric vs factor). Also I need to preserve row and column names ;) So I am working to resolve these details depending on data of cbioportal... Thank you ?__ c/ /'_;~~~~kmezhoud (*) \(*) ????? ?????? http://bioinformatics.tn/ On Wed, Dec 31, 2014 at 4:37 PM, Karim Mezhoud <kmezhoud at gmail.com> wrote:> Many Many Many thanks! > it is a demonstrative lesson. I need time to test all examples :) > Thank you for your time and support. > Happy and Healthy New Year > > ?__ > c/ /'_;~~~~kmezhoud > (*) \(*) ????? ?????? > http://bioinformatics.tn/ > > > > On Wed, Dec 31, 2014 at 2:38 PM, Martin Morgan <mtmorgan at fredhutch.org> > wrote: > >> On 12/31/2014 12:22 AM, Karim Mezhoud wrote: >> >>> Thanks, >>> It seems for loop spends less time ;) >>> >>> with >>> dim(DataFrame) >>> [1] 338 70 >>> >>> For loop has >>> user system elapsed >>> 0.012 0.000 0.012 >>> >>> and apply has >>> user system elapsed >>> 0.020 0.000 0.021 >>> >> >> The timings are so short that the answer in terms of speed is 'it does >> not matter'. >> >> Here is a selection of approaches >> >> f0 <- function(df) { >> for (i in seq_along(df)) >> df[,i] <- as.numeric(df[,i]) >> df >> } >> >> f0a <- function(df) { >> ## data.frame is a list-of-equal-length vectors; access each >> ## column with "[[" >> for (i in seq_along(df)) >> df[[i]] <- as.numeric(df[[i]]) >> df >> } >> >> f0c <- compiler::cmpfun(f0) ## loops sometimes benefit from compilation >> >> f1 <- function(df) >> as.data.frame(apply(df, 2, as.numeric)) >> >> f2 <- function(df) { >> ## replace all columns of df with list-of-vectors >> df[] <- lapply(df, as.numeric) >> df >> } >> >> f3 <- function(df) { >> ## coerce to matrix to avoid the explicit loop, use mode<- to >> ## change storage of elements >> m <- as.matrix(df) >> mode(m) <- "numeric" >> as.data.frame(m) >> } >> >> f4 <- function(df) { >> ## if it's a matrix, why are we returning a data.frame? >> m <- as.matrix(df) >> mode(m) <- "numeric" >> m >> } >> >> f4a <- function(df) >> ## unlist to single vector, coerce, then format as matrix >> matrix(as.numeric(unlist(df, use.names=FALSE)), nrow(df), >> dimnames=dimnames(df)) >> >> It's important to test that different methods return the same result >> (perhaps allowing for differences in attributes such as row or column >> names). The microbenchmark package repeats timings across multiple trials >> (default 100 times). >> >> library(microbenchmark) >> test <- function(df) { >> stopifnot( >> identical(f0(df), f0a(df)), >> identical(f0(df), f0c(df)), >> identical(f0(df), f1(df)), >> identical(f0(df), f2(df)), >> identical(f0(df), f3(df)), >> identical(as.matrix(f0(df)), f4(df)), >> all.equal(f4(df), f4a(df), check.attributes=FALSE)) >> microbenchmark(f0(df), f0a(df), f1(df), f2(df), f3(df), f4(df), >> f4a(df)) >> } >> >> Here are some data sets >> >> m <- matrix(rnorm(338 * 70), 338) >> df <- as.data.frame(m) >> dfc <- as.data.frame(lapply(df, as.character), stringsAsFactors=FALSE) >> dff <- as.data.frame(lapply(df, as.character)) >> >> and results >> >> > test(df) >> Unit: microseconds >> expr min lq mean median uq max neval >> f0(df) 6208.956 6270.5500 6367.4138 6306.7110 6362.2225 7731.281 100 >> f0a(df) 2917.973 2975.2090 3024.8623 3002.3805 3036.5365 3951.618 100 >> f0c(df) 6078.399 6150.1085 6264.0998 6188.3690 6244.5725 7684.116 100 >> f1(df) 2698.074 2743.2905 2821.8453 2769.3655 2805.5345 4033.229 100 >> f2(df) 1989.057 2041.0685 2066.1830 2055.0020 2083.8545 2267.732 100 >> f3(df) 1532.435 1572.9810 1609.7378 1597.6245 1624.2305 2003.584 100 >> f4(df) 808.593 828.5445 852.2626 847.5355 864.6665 1180.977 100 >> f4a(df) 422.657 437.2705 458.9845 455.2470 465.5815 695.443 100 >> > test(dfc) >> Unit: milliseconds >> expr min lq mean median uq max neval >> f0(df) 11.416532 11.647858 11.915287 11.767647 12.016276 14.239622 >> 100 >> f0a(df) 8.095709 8.211116 8.380638 8.289895 8.454948 9.529026 100 >> f0c(df) 11.339293 11.577811 11.772087 11.702341 11.896729 12.674766 >> 100 >> f1(df) 8.227371 8.277147 8.422412 8.331403 8.490411 9.145499 100 >> f2(df) 6.907888 7.010828 7.162529 7.147198 7.239048 7.763758 100 >> f3(df) 6.608107 6.688232 6.845936 6.792066 6.892635 8.359274 100 >> f4(df) 5.859482 5.939680 6.046976 5.993804 6.105388 6.968601 100 >> f4a(df) 5.372214 5.460987 5.556687 5.521542 5.614482 6.107081 100 >> > test(dff) >> Error: identical(f0(df), f1(df)) is not TRUE >> >> Except when dealing with factors, the use of explicit loops is the >> slowest. With factors, matrix-based methods coerce the level labels to >> numeric, whereas vector-based methods coerce the underlying codes (level >> values) of the factor; obviously great care needs to be taken. >> >> > f0(dff)[1:5, 1:5] >> V1 V2 V3 V4 V5 >> 1 150 232 294 88 56 >> 2 159 8 89 59 10 >> 3 132 171 40 205 119 >> 4 214 273 26 262 216 >> 5 281 49 255 31 233 >> > f1(dff)[1:5, 1:5] >> V1 V2 V3 V4 V5 >> 1 -1.7092463 0.50234009 0.8492982 -0.5636901 -0.38545566 >> 2 -2.3020854 -0.05580931 -0.5963673 -0.3671748 -0.09408031 >> 3 -1.2915110 -2.46181533 -0.2470108 0.3301129 -1.06810225 >> 4 0.3065989 0.89263099 -0.1717432 0.7721411 0.35856334 >> 5 0.8795616 -0.43049898 0.4560515 -0.1722099 0.46125149 >> >> In terms of 'best practice', I would represent my data in the appropriate >> data structure in the first place (as a matrix of appropriate type, rather >> than data.frame, so the entire coercion is irrelevant). If faced with a >> data.frame with specific columns to coerce I would use the approach >> >> cidx <- sapply(df, is.character) # index of columns to coerce >> df[cidx] <- lapply(df[cidx], as.numeric) >> >> which seems to be reasonably correct, expressive, compact, and speedy. >> >> Martin Morgan >> >> >> >>> ?__ >>> c/ /'_;~~~~kmezhoud >>> (*) \(*) ????? ?????? >>> http://bioinformatics.tn/ >>> >>> >>> >>> On Wed, Dec 31, 2014 at 8:54 AM, Berend Hasselman <bhh at xs4all.nl> wrote: >>> >>> >>>> On 31-12-2014, at 08:40, Karim Mezhoud <kmezhoud at gmail.com> wrote: >>>>> >>>>> Hi All, >>>>> I would like to choice between these two data frame convert. which is >>>>> faster? >>>>> >>>>> for(i in 1:ncol(DataFrame)){ >>>>> >>>>> DataFrame[,i] <- as.numeric(DataFrame[,i]) >>>>> } >>>>> >>>>> >>>>> OR >>>>> >>>>> DataFrame <- as.data.frame(apply(DataFrame,2 ,function(x) >>>>> as.numeric(x))) >>>>> >>>>> >>>>> >>>> Try it and use system.time. >>>> >>>> Berend >>>> >>>> Thanks >>>>> Karim >>>>> ?__ >>>>> c/ /'_;~~~~kmezhoud >>>>> (*) \(*) ????? ?????? >>>>> http://bioinformatics.tn/ >>>>> >>>>> [[alternative HTML version deleted]] >>>>> >>>>> ______________________________________________ >>>>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>>>> https://stat.ethz.ch/mailman/listinfo/r-help >>>>> PLEASE do read the posting guide >>>>> >>>> http://www.R-project.org/posting-guide.html >>>> >>>>> and provide commented, minimal, self-contained, reproducible code. >>>>> >>>> >>>> >>>> >>> [[alternative HTML version deleted]] >>> >>> ______________________________________________ >>> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see >>> https://stat.ethz.ch/mailman/listinfo/r-help >>> PLEASE do read the posting guide http://www.R-project.org/ >>> posting-guide.html >>> and provide commented, minimal, self-contained, reproducible code. >>> >>> >> >> -- >> Computational Biology / Fred Hutchinson Cancer Research Center >> 1100 Fairview Ave. N. >> PO Box 19024 Seattle, WA 98109 >> >> Location: Arnold Building M1 B861 >> Phone: (206) 667-2793 >> > >[[alternative HTML version deleted]]