- don''t look at RTC_PIE in rtc_timer_update(), and hence don''t call the function on REG_B writes at all - only call alarm_timer_update() on REG_B writes when relevant bits change - only call check_update_timer() on REG_B writes when SET changes - instead properly handle AF and PF when the guest is not also setting AIE/PIE respectively (for UF this was already the case, only a comment was slightly inaccurate) - raise the RTC IRQ not only when UIE gets set while UF was already set, but generalize this to cover AIE and PIE as well - properly mask off bit 7 when retrieving the hour values in alarm_timer_update(), and properly use RTC_HOURS_ALARM''s bit 7 when converting from 12- to 24-hour value - also handle the two other possible clock bases - use RTC_* names in a couple of places where literal numbers were used so far Signed-off-by: Jan Beulich <jbeulich@suse.com> --- a/xen/arch/x86/hvm/rtc.c +++ b/xen/arch/x86/hvm/rtc.c @@ -50,11 +50,24 @@ static void rtc_set_time(RTCState *s); static inline int from_bcd(RTCState *s, int a); static inline int convert_hour(RTCState *s, int hour); -static void rtc_periodic_cb(struct vcpu *v, void *opaque) +static void rtc_toggle_irq(RTCState *s) +{ + struct domain *d = vrtc_domain(s); + + ASSERT(spin_is_locked(&s->lock)); + s->hw.cmos_data[RTC_REG_C] |= RTC_IRQF; + hvm_isa_irq_deassert(d, RTC_IRQ); + hvm_isa_irq_assert(d, RTC_IRQ); +} + +void rtc_periodic_interrupt(void *opaque) { RTCState *s = opaque; + spin_lock(&s->lock); - s->hw.cmos_data[RTC_REG_C] |= 0xc0; + s->hw.cmos_data[RTC_REG_C] |= RTC_PF; + if ( s->hw.cmos_data[RTC_REG_B] & RTC_PIE ) + rtc_toggle_irq(s); spin_unlock(&s->lock); } @@ -68,19 +81,25 @@ static void rtc_timer_update(RTCState *s ASSERT(spin_is_locked(&s->lock)); period_code = s->hw.cmos_data[RTC_REG_A] & RTC_RATE_SELECT; - if ( (period_code != 0) && (s->hw.cmos_data[RTC_REG_B] & RTC_PIE) ) + switch ( s->hw.cmos_data[RTC_REG_A] & RTC_DIV_CTL ) { - if ( period_code <= 2 ) + case RTC_REF_CLCK_32KHZ: + if ( (period_code != 0) && (period_code <= 2) ) period_code += 7; - - period = 1 << (period_code - 1); /* period in 32 Khz cycles */ - period = DIV_ROUND((period * 1000000000ULL), 32768); /* period in ns */ - create_periodic_time(v, &s->pt, period, period, RTC_IRQ, - rtc_periodic_cb, s); - } - else - { + /* fall through */ + case RTC_REF_CLCK_1MHZ: + case RTC_REF_CLCK_4MHZ: + if ( period_code != 0 ) + { + period = 1 << (period_code - 1); /* period in 32 Khz cycles */ + period = DIV_ROUND(period * 1000000000ULL, 32768); /* in ns */ + create_periodic_time(v, &s->pt, period, period, RTC_IRQ, NULL, s); + break; + } + /* fall through */ + default: destroy_periodic_time(&s->pt); + break; } } @@ -102,7 +121,7 @@ static void check_update_timer(RTCState guest_usec = get_localtime_us(d) % USEC_PER_SEC; if (guest_usec >= (USEC_PER_SEC - 244)) { - /* RTC is in update cycle when enabling UIE */ + /* RTC is in update cycle */ s->hw.cmos_data[RTC_REG_A] |= RTC_UIP; next_update_time = (USEC_PER_SEC - guest_usec) * NS_PER_USEC; expire_time = NOW() + next_update_time; @@ -144,7 +163,6 @@ static void rtc_update_timer(void *opaqu static void rtc_update_timer2(void *opaque) { RTCState *s = opaque; - struct domain *d = vrtc_domain(s); spin_lock(&s->lock); if (!(s->hw.cmos_data[RTC_REG_B] & RTC_SET)) @@ -152,11 +170,7 @@ static void rtc_update_timer2(void *opaq s->hw.cmos_data[RTC_REG_C] |= RTC_UF; s->hw.cmos_data[RTC_REG_A] &= ~RTC_UIP; if ((s->hw.cmos_data[RTC_REG_B] & RTC_UIE)) - { - s->hw.cmos_data[RTC_REG_C] |= RTC_IRQF; - hvm_isa_irq_deassert(d, RTC_IRQ); - hvm_isa_irq_assert(d, RTC_IRQ); - } + rtc_toggle_irq(s); check_update_timer(s); } spin_unlock(&s->lock); @@ -175,21 +189,18 @@ static void alarm_timer_update(RTCState stop_timer(&s->alarm_timer); - if ((s->hw.cmos_data[RTC_REG_B] & RTC_AIE) && - !(s->hw.cmos_data[RTC_REG_B] & RTC_SET)) + if ( !(s->hw.cmos_data[RTC_REG_B] & RTC_SET) ) { s->current_tm = gmtime(get_localtime(d)); rtc_copy_date(s); alarm_sec = from_bcd(s, s->hw.cmos_data[RTC_SECONDS_ALARM]); alarm_min = from_bcd(s, s->hw.cmos_data[RTC_MINUTES_ALARM]); - alarm_hour = from_bcd(s, s->hw.cmos_data[RTC_HOURS_ALARM]); - alarm_hour = convert_hour(s, alarm_hour); + alarm_hour = convert_hour(s, s->hw.cmos_data[RTC_HOURS_ALARM]); cur_sec = from_bcd(s, s->hw.cmos_data[RTC_SECONDS]); cur_min = from_bcd(s, s->hw.cmos_data[RTC_MINUTES]); - cur_hour = from_bcd(s, s->hw.cmos_data[RTC_HOURS]); - cur_hour = convert_hour(s, cur_hour); + cur_hour = convert_hour(s, s->hw.cmos_data[RTC_HOURS]); next_update_time = USEC_PER_SEC - (get_localtime_us(d) % USEC_PER_SEC); next_update_time = next_update_time * NS_PER_USEC + NOW(); @@ -343,7 +354,6 @@ static void alarm_timer_update(RTCState static void rtc_alarm_cb(void *opaque) { RTCState *s = opaque; - struct domain *d = vrtc_domain(s); spin_lock(&s->lock); if (!(s->hw.cmos_data[RTC_REG_B] & RTC_SET)) @@ -351,11 +361,7 @@ static void rtc_alarm_cb(void *opaque) s->hw.cmos_data[RTC_REG_C] |= RTC_AF; /* alarm interrupt */ if (s->hw.cmos_data[RTC_REG_B] & RTC_AIE) - { - s->hw.cmos_data[RTC_REG_C] |= RTC_IRQF; - hvm_isa_irq_deassert(d, RTC_IRQ); - hvm_isa_irq_assert(d, RTC_IRQ); - } + rtc_toggle_irq(s); alarm_timer_update(s); } spin_unlock(&s->lock); @@ -365,7 +371,7 @@ static int rtc_ioport_write(void *opaque { RTCState *s = opaque; struct domain *d = vrtc_domain(s); - uint32_t orig; + uint32_t orig, mask; spin_lock(&s->lock); @@ -417,7 +423,7 @@ static int rtc_ioport_write(void *opaque /* set mode: reset UIP mode */ s->hw.cmos_data[RTC_REG_A] &= ~RTC_UIP; /* adjust cmos before stopping */ - if (!(s->hw.cmos_data[RTC_REG_B] & RTC_SET)) + if (!(orig & RTC_SET)) { s->current_tm = gmtime(get_localtime(d)); rtc_copy_date(s); @@ -426,22 +432,26 @@ static int rtc_ioport_write(void *opaque else { /* if disabling set mode, update the time */ - if ( s->hw.cmos_data[RTC_REG_B] & RTC_SET ) + if ( orig & RTC_SET ) rtc_set_time(s); } - /* if the interrupt is already set when the interrupt become - * enabled, raise an interrupt immediately*/ - if ((data & RTC_UIE) && !(s->hw.cmos_data[RTC_REG_B] & RTC_UIE)) - if (s->hw.cmos_data[RTC_REG_C] & RTC_UF) + /* + * If the interrupt is already set when the interrupt becomes + * enabled, raise an interrupt immediately. + * NB: RTC_{A,P,U}IE == RTC_{A,P,U}F respectively. + */ + for ( mask = RTC_UIE; mask <= RTC_PIE; mask <<= 1 ) + if ( (data & mask) && !(orig & mask) && + (s->hw.cmos_data[RTC_REG_C] & mask) ) { - hvm_isa_irq_deassert(d, RTC_IRQ); - hvm_isa_irq_assert(d, RTC_IRQ); + rtc_toggle_irq(s); + break; } s->hw.cmos_data[RTC_REG_B] = data; - if ( (data ^ orig) & RTC_PIE ) - rtc_timer_update(s); - check_update_timer(s); - alarm_timer_update(s); + if ( (data ^ orig) & RTC_SET ) + check_update_timer(s); + if ( (data ^ orig) & (RTC_24H | RTC_DM_BINARY | RTC_SET) ) + alarm_timer_update(s); break; case RTC_REG_C: case RTC_REG_D: @@ -456,7 +466,7 @@ static int rtc_ioport_write(void *opaque static inline int to_bcd(RTCState *s, int a) { - if ( s->hw.cmos_data[RTC_REG_B] & 0x04 ) + if ( s->hw.cmos_data[RTC_REG_B] & RTC_DM_BINARY ) return a; else return ((a / 10) << 4) | (a % 10); @@ -464,7 +474,7 @@ static inline int to_bcd(RTCState *s, in static inline int from_bcd(RTCState *s, int a) { - if ( s->hw.cmos_data[RTC_REG_B] & 0x04 ) + if ( s->hw.cmos_data[RTC_REG_B] & RTC_DM_BINARY ) return a; else return ((a >> 4) * 10) + (a & 0x0f); @@ -472,12 +482,14 @@ static inline int from_bcd(RTCState *s, /* Hours in 12 hour mode are in 1-12 range, not 0-11. * So we need convert it before using it*/ -static inline int convert_hour(RTCState *s, int hour) +static inline int convert_hour(RTCState *s, int raw) { + int hour = from_bcd(s, raw & 0x7f); + if (!(s->hw.cmos_data[RTC_REG_B] & RTC_24H)) { hour %= 12; - if (s->hw.cmos_data[RTC_HOURS] & 0x80) + if (raw & 0x80) hour += 12; } return hour; @@ -496,8 +508,7 @@ static void rtc_set_time(RTCState *s) tm->tm_sec = from_bcd(s, s->hw.cmos_data[RTC_SECONDS]); tm->tm_min = from_bcd(s, s->hw.cmos_data[RTC_MINUTES]); - tm->tm_hour = from_bcd(s, s->hw.cmos_data[RTC_HOURS] & 0x7f); - tm->tm_hour = convert_hour(s, tm->tm_hour); + tm->tm_hour = convert_hour(s, s->hw.cmos_data[RTC_HOURS]); tm->tm_wday = from_bcd(s, s->hw.cmos_data[RTC_DAY_OF_WEEK]); tm->tm_mday = from_bcd(s, s->hw.cmos_data[RTC_DAY_OF_MONTH]); tm->tm_mon = from_bcd(s, s->hw.cmos_data[RTC_MONTH]) - 1; --- a/xen/arch/x86/hvm/vpt.c +++ b/xen/arch/x86/hvm/vpt.c @@ -22,6 +22,7 @@ #include <asm/hvm/vpt.h> #include <asm/event.h> #include <asm/apic.h> +#include <asm/mc146818rtc.h> #define mode_is(d, name) \ ((d)->arch.hvm_domain.params[HVM_PARAM_TIMER_MODE] == HVMPTM_##name) @@ -218,6 +219,7 @@ void pt_update_irq(struct vcpu *v) struct periodic_time *pt, *temp, *earliest_pt = NULL; uint64_t max_lag = -1ULL; int irq, is_lapic; + void *pt_priv; spin_lock(&v->arch.hvm_vcpu.tm_lock); @@ -251,13 +253,14 @@ void pt_update_irq(struct vcpu *v) earliest_pt->irq_issued = 1; irq = earliest_pt->irq; is_lapic = (earliest_pt->source == PTSRC_lapic); + pt_priv = earliest_pt->priv; spin_unlock(&v->arch.hvm_vcpu.tm_lock); if ( is_lapic ) - { vlapic_set_irq(vcpu_vlapic(v), irq, 0); - } + else if ( irq == RTC_IRQ && pt_priv ) + rtc_periodic_interrupt(pt_priv); else { hvm_isa_irq_deassert(v->domain, irq); --- a/xen/include/asm-x86/hvm/vpt.h +++ b/xen/include/asm-x86/hvm/vpt.h @@ -181,6 +181,7 @@ void rtc_migrate_timers(struct vcpu *v); void rtc_deinit(struct domain *d); void rtc_reset(struct domain *d); void rtc_update_clock(struct domain *d); +void rtc_periodic_interrupt(void *); void pmtimer_init(struct vcpu *v); void pmtimer_deinit(struct domain *d); _______________________________________________ Xen-devel mailing list Xen-devel@lists.xen.org http://lists.xen.org/xen-devel
Keir Fraser
2012-Sep-11 07:23 UTC
Re: [PATCH, v3] x86/HVM: assorted RTC emulation adjustments
On 07/09/2012 14:01, "Jan Beulich" <JBeulich@suse.com> wrote:> - don''t look at RTC_PIE in rtc_timer_update(), and hence don''t call the > function on REG_B writes at all > - only call alarm_timer_update() on REG_B writes when relevant bits > change > - only call check_update_timer() on REG_B writes when SET changes > - instead properly handle AF and PF when the guest is not also setting > AIE/PIE respectively (for UF this was already the case, only a > comment was slightly inaccurate) > - raise the RTC IRQ not only when UIE gets set while UF was already > set, but generalize this to cover AIE and PIE as well > - properly mask off bit 7 when retrieving the hour values in > alarm_timer_update(), and properly use RTC_HOURS_ALARM''s bit 7 when > converting from 12- to 24-hour value > - also handle the two other possible clock bases > - use RTC_* names in a couple of places where literal numbers were used > so far > > Signed-off-by: Jan Beulich <jbeulich@suse.com>Acked-by: Keir Fraser <keir@xen.org>> --- a/xen/arch/x86/hvm/rtc.c > +++ b/xen/arch/x86/hvm/rtc.c > @@ -50,11 +50,24 @@ static void rtc_set_time(RTCState *s); > static inline int from_bcd(RTCState *s, int a); > static inline int convert_hour(RTCState *s, int hour); > > -static void rtc_periodic_cb(struct vcpu *v, void *opaque) > +static void rtc_toggle_irq(RTCState *s) > +{ > + struct domain *d = vrtc_domain(s); > + > + ASSERT(spin_is_locked(&s->lock)); > + s->hw.cmos_data[RTC_REG_C] |= RTC_IRQF; > + hvm_isa_irq_deassert(d, RTC_IRQ); > + hvm_isa_irq_assert(d, RTC_IRQ); > +} > + > +void rtc_periodic_interrupt(void *opaque) > { > RTCState *s = opaque; > + > spin_lock(&s->lock); > - s->hw.cmos_data[RTC_REG_C] |= 0xc0; > + s->hw.cmos_data[RTC_REG_C] |= RTC_PF; > + if ( s->hw.cmos_data[RTC_REG_B] & RTC_PIE ) > + rtc_toggle_irq(s); > spin_unlock(&s->lock); > } > > @@ -68,19 +81,25 @@ static void rtc_timer_update(RTCState *s > ASSERT(spin_is_locked(&s->lock)); > > period_code = s->hw.cmos_data[RTC_REG_A] & RTC_RATE_SELECT; > - if ( (period_code != 0) && (s->hw.cmos_data[RTC_REG_B] & RTC_PIE) ) > + switch ( s->hw.cmos_data[RTC_REG_A] & RTC_DIV_CTL ) > { > - if ( period_code <= 2 ) > + case RTC_REF_CLCK_32KHZ: > + if ( (period_code != 0) && (period_code <= 2) ) > period_code += 7; > - > - period = 1 << (period_code - 1); /* period in 32 Khz cycles */ > - period = DIV_ROUND((period * 1000000000ULL), 32768); /* period in ns > */ > - create_periodic_time(v, &s->pt, period, period, RTC_IRQ, > - rtc_periodic_cb, s); > - } > - else > - { > + /* fall through */ > + case RTC_REF_CLCK_1MHZ: > + case RTC_REF_CLCK_4MHZ: > + if ( period_code != 0 ) > + { > + period = 1 << (period_code - 1); /* period in 32 Khz cycles */ > + period = DIV_ROUND(period * 1000000000ULL, 32768); /* in ns */ > + create_periodic_time(v, &s->pt, period, period, RTC_IRQ, NULL, > s); > + break; > + } > + /* fall through */ > + default: > destroy_periodic_time(&s->pt); > + break; > } > } > > @@ -102,7 +121,7 @@ static void check_update_timer(RTCState > guest_usec = get_localtime_us(d) % USEC_PER_SEC; > if (guest_usec >= (USEC_PER_SEC - 244)) > { > - /* RTC is in update cycle when enabling UIE */ > + /* RTC is in update cycle */ > s->hw.cmos_data[RTC_REG_A] |= RTC_UIP; > next_update_time = (USEC_PER_SEC - guest_usec) * NS_PER_USEC; > expire_time = NOW() + next_update_time; > @@ -144,7 +163,6 @@ static void rtc_update_timer(void *opaqu > static void rtc_update_timer2(void *opaque) > { > RTCState *s = opaque; > - struct domain *d = vrtc_domain(s); > > spin_lock(&s->lock); > if (!(s->hw.cmos_data[RTC_REG_B] & RTC_SET)) > @@ -152,11 +170,7 @@ static void rtc_update_timer2(void *opaq > s->hw.cmos_data[RTC_REG_C] |= RTC_UF; > s->hw.cmos_data[RTC_REG_A] &= ~RTC_UIP; > if ((s->hw.cmos_data[RTC_REG_B] & RTC_UIE)) > - { > - s->hw.cmos_data[RTC_REG_C] |= RTC_IRQF; > - hvm_isa_irq_deassert(d, RTC_IRQ); > - hvm_isa_irq_assert(d, RTC_IRQ); > - } > + rtc_toggle_irq(s); > check_update_timer(s); > } > spin_unlock(&s->lock); > @@ -175,21 +189,18 @@ static void alarm_timer_update(RTCState > > stop_timer(&s->alarm_timer); > > - if ((s->hw.cmos_data[RTC_REG_B] & RTC_AIE) && > - !(s->hw.cmos_data[RTC_REG_B] & RTC_SET)) > + if ( !(s->hw.cmos_data[RTC_REG_B] & RTC_SET) ) > { > s->current_tm = gmtime(get_localtime(d)); > rtc_copy_date(s); > > alarm_sec = from_bcd(s, s->hw.cmos_data[RTC_SECONDS_ALARM]); > alarm_min = from_bcd(s, s->hw.cmos_data[RTC_MINUTES_ALARM]); > - alarm_hour = from_bcd(s, s->hw.cmos_data[RTC_HOURS_ALARM]); > - alarm_hour = convert_hour(s, alarm_hour); > + alarm_hour = convert_hour(s, s->hw.cmos_data[RTC_HOURS_ALARM]); > > cur_sec = from_bcd(s, s->hw.cmos_data[RTC_SECONDS]); > cur_min = from_bcd(s, s->hw.cmos_data[RTC_MINUTES]); > - cur_hour = from_bcd(s, s->hw.cmos_data[RTC_HOURS]); > - cur_hour = convert_hour(s, cur_hour); > + cur_hour = convert_hour(s, s->hw.cmos_data[RTC_HOURS]); > > next_update_time = USEC_PER_SEC - (get_localtime_us(d) % > USEC_PER_SEC); > next_update_time = next_update_time * NS_PER_USEC + NOW(); > @@ -343,7 +354,6 @@ static void alarm_timer_update(RTCState > static void rtc_alarm_cb(void *opaque) > { > RTCState *s = opaque; > - struct domain *d = vrtc_domain(s); > > spin_lock(&s->lock); > if (!(s->hw.cmos_data[RTC_REG_B] & RTC_SET)) > @@ -351,11 +361,7 @@ static void rtc_alarm_cb(void *opaque) > s->hw.cmos_data[RTC_REG_C] |= RTC_AF; > /* alarm interrupt */ > if (s->hw.cmos_data[RTC_REG_B] & RTC_AIE) > - { > - s->hw.cmos_data[RTC_REG_C] |= RTC_IRQF; > - hvm_isa_irq_deassert(d, RTC_IRQ); > - hvm_isa_irq_assert(d, RTC_IRQ); > - } > + rtc_toggle_irq(s); > alarm_timer_update(s); > } > spin_unlock(&s->lock); > @@ -365,7 +371,7 @@ static int rtc_ioport_write(void *opaque > { > RTCState *s = opaque; > struct domain *d = vrtc_domain(s); > - uint32_t orig; > + uint32_t orig, mask; > > spin_lock(&s->lock); > > @@ -417,7 +423,7 @@ static int rtc_ioport_write(void *opaque > /* set mode: reset UIP mode */ > s->hw.cmos_data[RTC_REG_A] &= ~RTC_UIP; > /* adjust cmos before stopping */ > - if (!(s->hw.cmos_data[RTC_REG_B] & RTC_SET)) > + if (!(orig & RTC_SET)) > { > s->current_tm = gmtime(get_localtime(d)); > rtc_copy_date(s); > @@ -426,22 +432,26 @@ static int rtc_ioport_write(void *opaque > else > { > /* if disabling set mode, update the time */ > - if ( s->hw.cmos_data[RTC_REG_B] & RTC_SET ) > + if ( orig & RTC_SET ) > rtc_set_time(s); > } > - /* if the interrupt is already set when the interrupt become > - * enabled, raise an interrupt immediately*/ > - if ((data & RTC_UIE) && !(s->hw.cmos_data[RTC_REG_B] & RTC_UIE)) > - if (s->hw.cmos_data[RTC_REG_C] & RTC_UF) > + /* > + * If the interrupt is already set when the interrupt becomes > + * enabled, raise an interrupt immediately. > + * NB: RTC_{A,P,U}IE == RTC_{A,P,U}F respectively. > + */ > + for ( mask = RTC_UIE; mask <= RTC_PIE; mask <<= 1 ) > + if ( (data & mask) && !(orig & mask) && > + (s->hw.cmos_data[RTC_REG_C] & mask) ) > { > - hvm_isa_irq_deassert(d, RTC_IRQ); > - hvm_isa_irq_assert(d, RTC_IRQ); > + rtc_toggle_irq(s); > + break; > } > s->hw.cmos_data[RTC_REG_B] = data; > - if ( (data ^ orig) & RTC_PIE ) > - rtc_timer_update(s); > - check_update_timer(s); > - alarm_timer_update(s); > + if ( (data ^ orig) & RTC_SET ) > + check_update_timer(s); > + if ( (data ^ orig) & (RTC_24H | RTC_DM_BINARY | RTC_SET) ) > + alarm_timer_update(s); > break; > case RTC_REG_C: > case RTC_REG_D: > @@ -456,7 +466,7 @@ static int rtc_ioport_write(void *opaque > > static inline int to_bcd(RTCState *s, int a) > { > - if ( s->hw.cmos_data[RTC_REG_B] & 0x04 ) > + if ( s->hw.cmos_data[RTC_REG_B] & RTC_DM_BINARY ) > return a; > else > return ((a / 10) << 4) | (a % 10); > @@ -464,7 +474,7 @@ static inline int to_bcd(RTCState *s, in > > static inline int from_bcd(RTCState *s, int a) > { > - if ( s->hw.cmos_data[RTC_REG_B] & 0x04 ) > + if ( s->hw.cmos_data[RTC_REG_B] & RTC_DM_BINARY ) > return a; > else > return ((a >> 4) * 10) + (a & 0x0f); > @@ -472,12 +482,14 @@ static inline int from_bcd(RTCState *s, > > /* Hours in 12 hour mode are in 1-12 range, not 0-11. > * So we need convert it before using it*/ > -static inline int convert_hour(RTCState *s, int hour) > +static inline int convert_hour(RTCState *s, int raw) > { > + int hour = from_bcd(s, raw & 0x7f); > + > if (!(s->hw.cmos_data[RTC_REG_B] & RTC_24H)) > { > hour %= 12; > - if (s->hw.cmos_data[RTC_HOURS] & 0x80) > + if (raw & 0x80) > hour += 12; > } > return hour; > @@ -496,8 +508,7 @@ static void rtc_set_time(RTCState *s) > > tm->tm_sec = from_bcd(s, s->hw.cmos_data[RTC_SECONDS]); > tm->tm_min = from_bcd(s, s->hw.cmos_data[RTC_MINUTES]); > - tm->tm_hour = from_bcd(s, s->hw.cmos_data[RTC_HOURS] & 0x7f); > - tm->tm_hour = convert_hour(s, tm->tm_hour); > + tm->tm_hour = convert_hour(s, s->hw.cmos_data[RTC_HOURS]); > tm->tm_wday = from_bcd(s, s->hw.cmos_data[RTC_DAY_OF_WEEK]); > tm->tm_mday = from_bcd(s, s->hw.cmos_data[RTC_DAY_OF_MONTH]); > tm->tm_mon = from_bcd(s, s->hw.cmos_data[RTC_MONTH]) - 1; > --- a/xen/arch/x86/hvm/vpt.c > +++ b/xen/arch/x86/hvm/vpt.c > @@ -22,6 +22,7 @@ > #include <asm/hvm/vpt.h> > #include <asm/event.h> > #include <asm/apic.h> > +#include <asm/mc146818rtc.h> > > #define mode_is(d, name) \ > ((d)->arch.hvm_domain.params[HVM_PARAM_TIMER_MODE] == HVMPTM_##name) > @@ -218,6 +219,7 @@ void pt_update_irq(struct vcpu *v) > struct periodic_time *pt, *temp, *earliest_pt = NULL; > uint64_t max_lag = -1ULL; > int irq, is_lapic; > + void *pt_priv; > > spin_lock(&v->arch.hvm_vcpu.tm_lock); > > @@ -251,13 +253,14 @@ void pt_update_irq(struct vcpu *v) > earliest_pt->irq_issued = 1; > irq = earliest_pt->irq; > is_lapic = (earliest_pt->source == PTSRC_lapic); > + pt_priv = earliest_pt->priv; > > spin_unlock(&v->arch.hvm_vcpu.tm_lock); > > if ( is_lapic ) > - { > vlapic_set_irq(vcpu_vlapic(v), irq, 0); > - } > + else if ( irq == RTC_IRQ && pt_priv ) > + rtc_periodic_interrupt(pt_priv); > else > { > hvm_isa_irq_deassert(v->domain, irq); > --- a/xen/include/asm-x86/hvm/vpt.h > +++ b/xen/include/asm-x86/hvm/vpt.h > @@ -181,6 +181,7 @@ void rtc_migrate_timers(struct vcpu *v); > void rtc_deinit(struct domain *d); > void rtc_reset(struct domain *d); > void rtc_update_clock(struct domain *d); > +void rtc_periodic_interrupt(void *); > > void pmtimer_init(struct vcpu *v); > void pmtimer_deinit(struct domain *d); > > > _______________________________________________ > Xen-devel mailing list > Xen-devel@lists.xen.org > http://lists.xen.org/xen-devel