Displaying 20 results from an estimated 8000 matches similar to: "options("contrasts")"
2005 Apr 13
2
multinom and contrasts
Hi,
I found that using different contrasts (e.g.
contr.helmert vs. contr.treatment) will generate
different fitted probabilities from multinomial
logistic regression using multinom(); while the fitted
probabilities from binary logistic regression seem to
be the same. Why is that? and for multinomial logisitc
regression, what contrast should be used? I guess it's
helmert?
here is an example
2010 Apr 21
5
Bugs? when dealing with contrasts
R version 2.10.1 (2009-12-14)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with
2003 Jan 16
2
polynomial contrasts in R
In S-Plus, I can obtain polynomial contrasts for an ordered factor with
contr.poly(). The function also exists in R, however is limited to factors
where the levels are equally spaced. In S-Plus, one can obtain the contrasts
for a set of numeric values representing unequally spaced ordered factors.
Has anyone implemented this in R? I see that the S-Plus function calls
another function (poly.raw())
2008 Jun 16
1
contrasts using adonis function
Hi,
Somebody knows how to make contrasts if i'm using the function adonis?
Thanks.
2002 Nov 07
4
Preferable contrasts?
Dear all,
I'm working with Cox-regression, because data could be censored.
But in this particular case not.
Now I have a simple example: PRO and PRE are (0,1) coded.
The response is not normal distributed.
We are interested in a model which could describe interaction.
But my results are depending strongly in the choose of the contrast option.
It is clear that there is some dependence in
2006 Aug 17
1
Setting contrasts for polr() to get same result of SAS
Hi all,
I am trying to do a ordered probit regression using polr(), replicating a
result from SAS.
>polr(y ~ x, dat, method='probit')
suppose the model is y ~ x, where y is a factor with 3 levels and x is a
factor with 5 levels,
To get coefficients, SAS by default use the last level as reference, R by
default use the first level (correct me if I was wrong),
The result I got is a
2007 Jan 08
2
Contrasts for ordered factors
Dear all,
I do not seem to grasp how contrasts are set for ordered factors. Perhaps someone can elighten me?
When I work with ordered factors, I would often like to be able to reduce the used polynomial to a simpler one (where possible). Thus, I would like to explicetly code the polynomial but ideally, the intial model (thus, the full polynomial) would be identical to one with an ordered factor.
2011 Feb 02
2
unequally spaced factor levels orthogonal polynomial contrasts coefficients trend analysis
Hello [R]-help
I am trying to find
> a package where you can do ANOVA based trend analysis on grouped data
> using orthogonal polynomial contrasts coefficients, for unequally
> spaced factor levels. The closest hit I've had is from this web site:
>(http://webcache.googleusercontent.com/search?q=cache:xN4K_KGuYGcJ:www.datavis.ca/sasmac/orpoly.html+Orthogonal+polynomial
>l
but I
2010 Sep 23
2
Contraste polinomial con dos factores con niveles no equidistantes
Hola compañeros de la lista, qué tal.
Los molesto con la siguiente duda: Tengo un experimento con dos
factores A y B, cada uno de los cuales tiene los siguientes niveles (que
son concentraciones de dos hormonas vegetales aplicadas a plantas):
niveles del factor A: 0, 0.2, 0.5, 1
niveles del factor B: 0, 0.1, 0.2, 0.5, 1
y mi variable de respuesta es continua, todo dentro del set de datos
2007 Oct 09
2
fit.contrast and interaction terms
Dear R-users,
I want to fit a linear model with Y as response variable and X a categorical variable (with 4 categories), with the aim of comparing the basal category of X (category=1) with category 4. Unfortunately, there is another categorical variable with 2 categories which interact with x and I have to include it, so my model is s "reg3: Y=x*x3". Using fit.contrast to make the
2006 Sep 23
1
contrasts in aov
useRs,
A no doubt simple question, but I am baffled. Indeed, I think I
once knew the answer, but can't recover it. The default contrasts
for aov (and lm, and...) are contr.treatment and contr.poly for
unordered and ordered factors, respectively. But, how does one
invoke the latter? That is, in a data.frame, how does one indicate
that a factor is an *ordered* factor such that
2012 Jul 06
2
Anova Type II and Contrasts
the study design of the data I have to analyse is simple. There is 1 control group (CTRL) and 2 different treatment groups (TREAT_1 and TREAT_2).
The data also includes 2 covariates COV1 and COV2. I have been asked to check if there is a linear or quadratic treatment effect in the data.
I created a dummy data set to explain my situation:
df1 <- data.frame(
Observation =
2010 Sep 29
1
Understanding linear contrasts in Anova using R
#I am trying to understand how R fits models for contrasts in a
#simple one-way anova. This is an example, I am not stupid enough to want
#to simultaneously apply all of these contrasts to real data. With a few
#exceptions, the tests that I would compute by hand (or by other software)
#will give the same t or F statistics. It is the contrast estimates that
R produces
#that I can't seem to
2008 Oct 11
2
R vs SPSS contrasts
Hi Folks,
I'm comparing some output from R with output from SPSS.
The coefficients of the independent variables (which are
all factors, each at 2 levels) are identical.
However, R's Intercept (using default contr.treatment)
differs from SPSS's 'constant'. It seems that the contrasts
were set in SPSS using
/CONTRAST (varname)=Simple(1)
I can get R's Intercept to match
2009 Dec 18
1
linear contrasts for trends in an anova
Hi everybody,
I'm trying to construct contrasts for an ANOVA to determine if there is a significant trend in the means of my groups.
In the following example, based on the type of 2x3 ANOVA I'm trying to perform, does the linear polynomial contrast generated by contr.poly allow me to test for a linear trend across groups?
doi=data.frame(
Group=c(
rep(1, 5), rep(2, 5), rep(3, 5),
2007 Feb 14
1
se.contrast confusion
Hello,
I've got what I'd expect to be a pretty simple issue: I fit an aov object
using multiple error strata, and would like some significance tests for the
contrasts I specified.
In this contrived example, I model some test score as the interaction of a
subject's gender and two emotion variables (angry, happy, neutral), measured
at entry to the experiment (entry) and later
2011 Feb 03
3
interpret significance from the contr.poly() function
Hello R-help
I don’t know how to interpret significance from the contr.poly() function . From
the example below
: how can I tell if data has a significant Linear/quadratic/cubic trend?
> contr.poly(4, c(1,2,4,8))
.L .Q .C
[1,] -0.51287764 0.5296271 -0.45436947
[2,] -0.32637668 -0.1059254 0.79514657
[3,] 0.04662524 -0.7679594 -0.39757328
[4,] 0.79262909
2006 Jan 18
3
linear contrasts with anova
I have some doubts about the validity of my procedure to estimeate linear contrasts ina a factorial design.
For sake of semplicity, let's imagine a one way ANOVA with three levels. I am interested to test the significance of the difference between the first and third level (called here contrast C1) and between the first and the seconda level (called here contrast C2). I used the following
2006 May 11
2
greco-latin square
Hi,
I am analyzing a repeated-measures Greco-Latin Square with the aov command.
I am using aov to calculate the MSs and then picking by hand the appropriate
neumerator and denominator terms for the F tests.
The data are the following:
responseFinger
mapping.code Subject.n index middle ring
little
----------------------------------------------------------------------------
1 1
2005 Aug 29
1
lme and ordering of terms
Dear R users,
When fitting a lme() object (from the nlme library), is it possible to
test interactions *before* main effects? As I understand, R
conventionally re-orders all terms such that highest-order interactions
come last - but I??d like to know if it??s possible (and sensible) to
change this ordering of terms.
I??ve tried the terms() command (from aov) but I don??t know if something