similar to: stepAIC: plot predicted versus observed

Displaying 20 results from an estimated 3000 matches similar to: "stepAIC: plot predicted versus observed"

2005 Dec 08
1
mle.stepwise versus step/stepAIC
Hello, I have a question pertaining to the stepwise regression which I am trying to perform. I have a data set in which I have 14 predictor variables accompanying my response variable. I am not sure what the difference is between the function "mle.stepwise" found in the wle package and the functions "step" or "stepAIC"? When would one use
2003 Aug 04
1
Error in calling stepAIC() from within a function
Hi, I am experiencing a baffling behaviour of stepAIC(), and I hope to get any advice/help on what went wrong or I'd missed. I greatly appreciate any advice given. I am using stepAIC() to, say, select a model via stepwise selection method. R Version : 1.7.1 Windows ME Many thanks and best regards, Siew-Leng ***Issue : When stepAIC() is placed within a function, it seems
2006 Oct 11
1
Bug in stepAIC?
Hi, First of all, thanks for the great work on R in general, and MASS in particular. It's been a life saver for me many times. However, I think I've discovered a bug. It seems that, when I use weights during an initial least-squares regression fit, and later try to add terms using stepAIC(), it uses the weights when looking to remove terms, but not when looking to add them:
2003 May 02
2
stepAIC/lme (1.6.2)
Based on the stepAIC help, I have assumed that it only was for lm, aov, and glm models. I gather from the following correspondence that it also works with lme models. Thomas Lumley 07:40 a.m. 28/04/03 -0700 4 Re: [R] stepAIC/lme problem (1.7.0 only) Prof Brian Ripley 04:19 p.m. 28/04/03 +0100 6 Re: [R] stepAIC/lme problem (1.7.0 only) Prof Brian Ripley 06:09 p.m. 29/04/03 +0100 6 Re: [R]
2006 Apr 07
1
how to run stepAIC starting with NULL model?
Hello, I'm trying to figure out how to run the stepAIC function starting with the NULL model. I can call the null model (e.g., lm(y ~ NULL)), but using this object in stepAIC doesn't seem to work. The objective is to calculate AICc. This can be done if stepAIC can be run starting with the NULL model; the (2p(p-1)/(n-p-1))to get AICc would be added to the final step AIC value. Can
2009 May 05
2
Stepwise logistic Regression with significance testing - stepAIC
Hello R-Users,   I have one binary dependent variable and a set of independent variables (glm(formula,…,family=”binomial”) ) and I am using the function stepAIC (“MASS”) for choosing an optimal model. However I am not sure if stepAIC considers significance properties like Likelihood ratio test and Wald test (see example below).     > y <- rbinom(30,1,0.4) > x1 <- rnorm(30) > x2
2017 Jun 08
1
stepAIC() that can use new extractAIC() function implementing AICc
I would like test AICc as a criteria for model selection for a glm using stepAIC() from MASS package. Based on various information available in WEB, stepAIC() use extractAIC() to get the criteria used for model selection. I have created a new extractAIC() function (and extractAIC.glm() and extractAIC.lm() ones) that use a new parameter criteria that can be AIC, BIC or AICc. It works as
2017 Aug 22
1
boot.stepAIC fails with computed formula
Failed? What was the error message? Cheers, Bert Bert Gunter "The trouble with having an open mind is that people keep coming along and sticking things into it." -- Opus (aka Berkeley Breathed in his "Bloom County" comic strip ) On Tue, Aug 22, 2017 at 8:17 AM, Stephen O'hagan <SOhagan at manchester.ac.uk> wrote: > I'm trying to use boot.stepAIC for
2007 Jun 05
1
Question using stepAIC
Hi - I use stepAIC to automatically select the model. The stepAIC was applied on polr as follow:objPolr <- polr(formula=myformula, data=dat, method=METHOD);objPolr.step <- stepAIC(objPolr, trace=T);Then R complaints that it doesn't know about 'dat' when it executes the second line. Below is the exact error that I got when executing the stepAIC line above:Error in eval(expr,
2017 Aug 22
0
boot.stepAIC fails with computed formula
The error is "the model fit failed in 50 bootstrap samples Error: non-character argument" Cheers, SOH. On 22/08/2017 17:52, Bert Gunter wrote: > Failed? What was the error message? > > Cheers, > > Bert > > > Bert Gunter > > "The trouble with having an open mind is that people keep coming along > and sticking things into it." > -- Opus (aka
2017 Aug 22
1
boot.stepAIC fails with computed formula
SImplify your call to lm using the "." argument instead of manipulating formulas. > strt <- lm(y1 ~ ., data = dat) and you do not need to explicitly specify the "1+" on the rhs for lm, so > frm2<-as.formula(paste(trg," ~ ", paste(xvars,collapse = "+"))) works fine, too. Anyway, doing this gives (but see end of output)" bst <-
2003 Apr 28
2
stepAIC/lme problem (1.7.0 only)
I can use stepAIC on an lme object in 1.6.2, but I get the following error if I try to do the same in 1.7.0: Error in lme(fixed = resp ~ cov1 + cov2, data = a, random = structure(list( : unused argument(s) (formula ...) Does anybody know why? Here's an example: library(nlme) library(MASS) a <- data.frame( resp=rnorm(250), cov1=rnorm(250), cov2=rnorm(250),
2006 May 05
1
trouble with step() and stepAIC() selecting the best model
Hello, I have some trouble using step() and stepAIC() functions. I'm predicting recruitment against several factors for different plant species using a negative binomial glm. Sometimes, summary(step(model)) or summary(stepAIC(model) does not select the best model (lowest AIC) but just stops before. For some species, step() works and stepAIC don't and in others, it's the opposite.
2017 Jun 06
1
glm and stepAIC selects too many effects
This is a question at the border between stats and r. When I do a glm with many potential effects, and select a model using stepAIC, many independent variables are selected even if there are no relationship between dependent variable and the effects (all are random numbers). Do someone has a solution to prevent this effect ? Is it related to Bonferoni correction ? Is there is a ratio of
2017 Aug 22
0
boot.stepAIC fails with computed formula
OK, here's the problem. Continuing with your example: strt1 <- lm(y1 ~1, dat) strt2 <- lm(frm1,dat) > strt1 Call: lm(formula = y1 ~ 1, data = dat) Coefficients: (Intercept) 41.73 > strt2 Call: lm(formula = frm1, data = dat) Coefficients: (Intercept) 41.73 Note that the formula objects of the lm object are different: strt2 does not evaluate the formula. So
2003 Jun 16
1
stop criterion for stepAIC
Hello, I am using the function stepAIC (library MASS) to run a backward elimination on my linear regression. The new model stepAIC calculates contains coefficients that have a Pr(>|t|) value below 0.1, but I'd like to have only coefficients with 0.001 or below. How can I change the stop criterion for stepAIC, so that it is more strict? There is a parameter "steps", but it is
2007 Jun 27
1
stepAIC on lm() where response is a matrix..
dear R users, I have fit the lm() on a mtrix of responses. i.e M1 = lm(cbind(R1,R2)~ X+Y+0). When i use summary(M1), it shows details for R1 and R2 separately. Now i want to use stepAIC on these models. But when i use stepAIC(M1) an error message comes saying that dropterm.mlm is not implemented. What is the way out to use stepAIC in such cases. regards,
2011 Feb 10
1
Newb Prediction Question using stepAIC and predict(), is R wrong?
I'm using stepAIC to fit a model. Then I'm trying to use that model to predict future happenings. My first few variables are labeled as their column. (Is this a problem?) The dataframe that I use to build the model is the same as the data I'm using to predict with. Here is a portion of what is happening.. This is the value it is predicting = > [1] 9.482975 Summary of the
2005 Aug 15
2
stepAIC invalid scope argument
I am trying to replicate the first example from stepAIC from the MASS package with my own dataset but am running into error. If someone can point where I have gone wrong, I would appreciate it very much. Here is an example : set.seed(1) df <- data.frame( x1=rnorm(1000), x2=rnorm(1000), x3=rnorm(1000) ) df$y <- 0.5*df$x1 + rnorm(1000, mean=8, sd=0.5) # pairs(df); head(df) lo <-
2009 Feb 18
1
using stepAIC with negative binomial regression - error message help
Dear List, I am having problems running stepAIC with a negative binomial regression model.  I am working with data on manta ray abundance, using 20 predictor variables.  Predictors include variables for location (site), time (year, cos and sin of calendar day, length of day, percent lunar illumination), oceanography (sea surface temp mean and std, sea surface height mean and std), weather (cos