similar to: more questions on gam/gamm(mgcv)...

Displaying 20 results from an estimated 10000 matches similar to: "more questions on gam/gamm(mgcv)..."

2006 Dec 04
1
package mgcv, command gamm
Hi I am an engineer and am running the package mgcv and specifically the command gamm (generalized additive mixed modelling), with random effects. i have a few queries: 1. When I run the command with 1000/2000 observations, it runs ok. However, I would like to see the results as in vis.gam command in the same package, with the 3-d visuals. It appears no such option is available for gamm in the
2010 Jun 16
3
mgcv, testing gamm vs lme, which degrees of freedom?
Dear all, I am using the "mgcv" package by Simon Wood to estimate an additive mixed model in which I assume normal distribution for the residuals. I would like to test this model vs a standard parametric mixed model, such as the ones which are possible to estimate with "lme". Since the smoothing splines can be written as random effects, is it correct to use an (approximate)
2009 Oct 13
2
How to choose a proper smoothing spline in GAM of mgcv package?
Hi, there, I have 5 datasets. I would like to choose a basis spline with same knots in GAM function in order to obtain same basis function for 5 datasets. Moreover, the basis spline is used to for an interaction of two covarites. I used "cr" in one covariate, but it can only smooth w.r.t 1 covariate. Can anyone give me some suggestion about how to choose a proper smoothing spline
2011 Mar 10
2
ERROR: gamm function (mgcv package). attempt to set an attribute on NULL
Hello:I run a gamm with following call :mode<-gamm(A~B,random=list(ID=~1),family=gaussian,na.action=na.omit,data=rs)an error happened:ERROR names(object$sp) <- names(G$sp) : attempt to set an attribute on NULLwith mgcv version 1.7-3What so? How can I correct the Error? Thanks very much for any help. [[alternative HTML version deleted]]
2007 Jun 25
1
gam function in the mgcv library
I would like to fit a logistic regression using a smothing spline, where the spline is a piecewise cubic polynomial. Is the knots option used to define the subintervals for each piece of the cubic spline? If yes and there are k knots, then why does the coefficients field in the returned object from gam only list k coefficients? Shouldn't there be 4k -4 coefficients? Sincerely, Bill
2011 Jun 24
2
mgcv:gamm: predict to reflect random s() effects?
Dear useRs, I am using the gamm function in the mgcv package to model a smooth relationship between a covariate and my dependent variable, while allowing for quantification of the subjectwise variability in the smooths. What I would like to do is to make subjectwise predictions for plotting purposes which account for the random smooth components of the fit. An example. (sessionInfo() is at
2007 Oct 03
1
How to avoid overfitting in gam(mgcv)
Dear listers, I'm using gam(from mgcv) for semi-parametric regression on small and noisy datasets(10 to 200 observations), and facing a problem of overfitting. According to the book(Simon N. Wood / Generalized Additive Models: An Introduction with R), it is suggested to avoid overfitting by inflating the effective degrees of freedom in GCV evaluation with increased "gamma"
2006 Jul 03
1
gamm
Hello, I am a bit confused about gamm in mgcv. Consulting Wood (2006) or Ruppert et al. (2003) hasn't taken away my confusion. In this code from the gamm help file: b2<-gamm(y~s(x0)+s(x1)+s(x2)+s(x3),family=poisson,random=list(fac=~1)) Am I correct in assuming that we have a random intercept here....but that the amount of smoothing is also changing per level of the
2013 Mar 23
1
Time trends with GAM
Hi all, I am using GAM to model time trends in a logistic regression. Yet I would like to extract the the fitted spline from it to add it to another model, that cannot be fitted in GAM or GAMM. Thus I have 2 questions: 1) How can I fit a smoother over time so that I force one knot to be at a particular location while letting the model to find the other knots? 2) how can I extract the matrix
2010 May 19
1
Displaying smooth bases - mgcv package
Dear all, for demonstration purposes I want to display the basis functions used by a thin plate regression spline in a gamm model. I've been searching the help files, but I can't really figure out how to get the plots of the basis functions. Anybody an idea? Some toy code : require(mgcv) require(nlme) x1 <- 1:1000 x2 <- runif(1000,10,500) fx1 <- -4*sin(x1/50) fx2 <-
2011 Mar 28
2
mgcv gam predict problem
Hello I'm using function gam from package mgcv to fit splines. ?When I try to make a prediction slightly beyond the original 'x' range, I get this error: > A = runif(50,1,149) > B = sqrt(A) + rnorm(50) > range(A) [1] 3.289136 145.342961 > > > fit1 = gam(B ~ s(A, bs="ps"), outer.ok=TRUE) > predict(fit1, newdata=data.frame(A=149.9), outer.ok=TRUE) Error
2010 Jul 22
1
gam() and contrast
Dear All, I met problems when doing contrast and now really need some help in the model below: Fit=gam(y~treat+SEQUENCE+PERIOD+SEX+s(x),data=dat, random=list(SUBJID=~1),correlation=corAR1(form=~1|SUBJID)) And error message keeps coming out when I want to compare the differences between treatments: Diff=contrast(Fit, list(treat=treatment[-placebo.pos]),list(treat="Placebo"),
2013 Jul 08
1
error in "predict.gam" used with "bam"
Hello everyone. I am doing a logistic gam (package mgcv) on a pretty large dataframe (130.000 cases with 100 variables). Because of that, the gam is fitted on a random subset of 10000. Now when I want to predict the values for the rest of the data, I get the following error: > gam.basis_alleakti.1.pr=predict(gam.basis_alleakti.1, +
2011 Nov 08
3
GAM
Hi R community! I am analyzing the data set "motorins" in the package "faraway" by using the generalized additive model. it shows the following error. Can some one suggest me the right way? library(faraway) data(motorins) motori <- motorins[motorins$Zone==1,] library(mgcv) >amgam <- gam(log(Payment) ~ offset(log(Insured))+ s(as.numeric(Kilometres)) + s(Bonus) + Make +
2006 Jun 18
1
GAM selection error msgs (mgcv & gam packages)
Hi all, My question concerns 2 error messages; one in the gam package and one in the mgcv package (see below). I have read help files and Chambers and Hastie book but am failing to understand how I can solve this problem. Could you please tell me what I must adjust so that the command does not generate error message? I am trying to achieve model selection for a GAM which is required for
2007 Oct 04
1
Convergence problem in gam(mgcv)
Dear all, I'm trying to fit a pure additive model of the following formula : fit <- gam(y~x1+te(x2, x3, bs="cr")) ,with the smoothing parameter estimation method "magic"(default). Regarding this, I have two questions : Question 1 : In some cases the value of "mgcv.conv$fully.converged" becomes "FALSE", which tells me that the method stopped with a
2007 Dec 13
1
Probelms on using gam(mgcv)
Dear all, Following the help from gam(mgcv) help page, i tried to analyze my dataset with all the default arguments. Unfortunately, it can't be run successfully. I list the errors below. #m.gam<-gam(mark~s(x,y)+s(lstday2004)+s(slope)+s(ndvi2004)+s(elevation)+s(disbinary),family=binomial(logit),data=point)
2010 Jan 26
1
AIC for comparing GLM(M) with (GAM(M)
Hello I'm analyzing a dichotomous dependent variable (dv) with more than 100 measurements (within-subjects variable: hours24) per subject and more than 100 subjects. The high number of measurements allows me to model more complex temporal trends. I would like to compare different models using GLM, GLMM, GAM and GAMM, basically do demonstrate the added value of GAMs/GAMMs relative to
2010 Apr 14
1
Selecting derivative order penalty for thin plate spline regression (GAM - mgcv)
Hi, I am using GAMs (package mgcv) to smooth event rates in a penalized regression setting and I was wondering if/how one can select the order of the derivative penalty. For my particular problem the order of the penalty (parameter "m" inside the "s" terms of the formula argument) appears to have a larger effect on the AIC/deviance of the estimated model than the
2009 Sep 20
1
How to choose knots for GAM?
Hi, all I want to choose same knots in GAM for 10 different studies so that they has the same basis function. Even though I choose same knots and same dimensions of basis smoothing, the basis representations are still not same. My command is as follows: data.gam<-gam(y~s(age,bs='cr',k=10)+male,family=binomial,knots=list(age=seq(45,64,length=10))) What is my mistake for choice of