similar to: glmpath in R

Displaying 20 results from an estimated 10000 matches similar to: "glmpath in R"

2009 Aug 21
1
LASSO: glmpath and cv.glmpath
Hi, perhaps you can help me to find out, how to find the best Lambda in a LASSO-model. I have a feature selection problem with 150 proteins potentially predicting Cancer or Noncancer. With a lasso model fit.glm <- glmpath(x=as.matrix(X), y=target, family="binomial") (target is 0, 1 <- Cancer non cancer, X the proteins, numerical in expression), I get following path (PICTURE
2011 Jul 22
4
glmnet with binary logistic regression
Hi all, I am using the glmnet R package to run LASSO with binary logistic regression. I have over 290 samples with outcome data (0 for alive, 1 for dead) and over 230 predictor variables. I currently using LASSO to reduce the number of predictor variables. I am using the cv.glmnet function to do 10-fold cross validation on a sequence of lambda values which I let glmnet determine. I then take
2011 May 24
1
seeking help on using LARS package
Hi, I am writing to seek some guidance regarding using Lasso regression with the R package LARS. I have introductory statistics background but I am trying to learn more. Right now I am trying to duplicate the results in a paper for shRNA prediction "An accurate and interpretable model for siRNA efficacy prediction, Jean-Philippe Vert et. al, Bioinformatics" for a Bioinformatics project
2011 Mar 25
2
A question on glmnet analysis
Hi, I am trying to do logistic regression for data of 104 patients, which have one outcome (yes or no) and 15 variables (9 categorical factors [yes or no] and 6 continuous variables). Number of yes outcome is 25. Twenty-five events and 15 variables mean events per variable is much less than 10. Therefore, I tried to analyze the data with penalized regression method. I would like please some of the
2011 May 01
1
Different results of coefficients by packages penalized and glmnet
Dear R users: Recently, I learn to use penalized logistic regression. Two packages (penalized and glmnet) have the function of lasso. So I write these code. However, I got different results of coef. Can someone kindly explain. # lasso using penalized library(penalized) pena.fit2<-penalized(HRLNM,penalized=~CN+NoSus,lambda1=1,model="logistic",standardize=TRUE) pena.fit2
2011 Aug 10
2
glmnet
Hi All,  I have been trying to use glmnet package to do LASSO linear regression. my x data is a matrix n_row by n_col and y is a vector of size n_row corresponding to the vector data. The number of n_col is much more larger than the number of n_row. I do the following: fits = glmnet(x, y, family="multinomial")I have been following this
2013 Jul 17
1
glmnet on Autopilot
Dear List, I'm running simulations using the glmnet package. I need to use an 'automated' method for model selection at each iteration of the simulation. The cv.glmnet function in the same package is handy for that purpose. However, in my simulation I have p >> N, and in some cases the selected model from cv.glmet is essentially shrinking all coefficients to zero. In this case,
2023 Oct 24
1
running crossvalidation many times MSE for Lasso regression
?s 20:12 de 23/10/2023, varin sacha via R-help escreveu: > Dear R-experts, > > I really thank you all a lot for your responses. So, here is the error (and warning) messages at the end of my R code. > > Many thanks for your help. > > > Error in UseMethod("predict") : > ? no applicable method for 'predict' applied to an object of class
2006 Mar 02
0
glmpath (new version 0.91)
We have uploaded to CRAN a new version of glmpath, a package which fits the L1 regularization path for generalized linear models. The revision includes: - coxpath, a function for fitting the L1-regularization path for the Cox ph model; - bootstrap functions for analyzing sparse solutions; - the ability to mix in L2 regularization along with L1 (elasticnet). We have also completed a report that
2006 Mar 02
0
glmpath (new version 0.91)
We have uploaded to CRAN a new version of glmpath, a package which fits the L1 regularization path for generalized linear models. The revision includes: - coxpath, a function for fitting the L1-regularization path for the Cox ph model; - bootstrap functions for analyzing sparse solutions; - the ability to mix in L2 regularization along with L1 (elasticnet). We have also completed a report that
2023 Oct 23
1
running crossvalidation many times MSE for Lasso regression
Dear R-experts, I really thank you all a lot for your responses. So, here is the error (and warning) messages at the end of my R code. Many thanks for your help. Error in UseMethod("predict") : ? no applicable method for 'predict' applied to an object of class "c('matrix', 'array', 'double', 'numeric')" > mean(unlist(lst)) [1] NA
2010 Jun 04
0
glmpath crossvalidation
Hi all, I'm relatively new to using R, and have been trying to fit an L1 regularization path using coxpath from the glmpath library. I'm interested in using a cross validation framework, where I crossvalidate on a training set to select the lambda that achieves the lowest error, then use that value of lambda on the entire training set, before applying to a test set. This seems to entail
2012 Dec 18
2
how to get a value from a list (using paste function)?
Dear my R friends, I want to get a number from a list using paste function. In my example, lambda.rule <- "lambda.1se" cvtest is a list (result from cv.glmnet) and cvtest$lambda.1se [1] 1.308973 I want to call the value using paste function. I used get function but there was an error. test <- get(paste("cvtest$",lambda.rule, sep="")) Error in
2023 Oct 23
2
running crossvalidation many times MSE for Lasso regression
For what it's worth it looks like spm2 is specifically for *spatial* predictive modeling; presumably its version of CV is doing something spatially aware. I agree that glmnet is old and reliable. One might want to use a tidymodels wrapper to create pipelines where you can more easily switch among predictive algorithms (see the `parsnip` package), but otherwise sticking to glmnet
2012 Mar 21
2
glmnet: obtain predictions using predict and also by extracting coefficients
All, For my understanding, I wanted to see if I can get glmnet predictions using both the predict function and also by multiplying coefficients by the variable matrix. This is not worked out. Could anyone suggest where I am going wrong? I understand that I may not have the mean/intercept correct, but the scaling is also off, which suggests a bigger mistake. Thanks for your help. Juliet Hannah
2011 Feb 17
1
cv.glmnet errors
Hi, I am trying to do multinomial regression using the glmnet package, but the following gives me an error (for no reason apparent to me): library(glmnet) cv.glmnet(x=matrix(c(1,2,3,4,5,6,1,2,3,4,5,6), nrow=6),y=as.factor(c(1,2,1,2,3,3)),family='multinomial',alpha=0.5, nfolds=2) The error i get is: Error in if (outlist$msg != "Unknown error") return(outlist) : argument is of
2013 May 02
0
Questions regarding use of predict() with glmpath
I'm trying to do LASSO in R with the package glmpath. However, I'm not sure if I am using the accompanying prediction function *predict.glmpath()* correctly. Suppose I fit some regularized binomial regression model like so: library(glmpath);load(heart.data);attach(heart.data); fit <- glmpath(x, y, family=binomial) Then I can use predict.glmpath() to estimate the value of the
2013 Jul 06
1
problem with BootCV for coxph in pec after feature selection with glmnet (lasso)
Hi, I am attempting to evaluate the prediction error of a coxph model that was built after feature selection with glmnet. In the preprocessing stage I used na.omit (dataset) to remove NAs. I reconstructed all my factor variables into binary variables with dummies (using model.matrix) I then used glmnet lasso to fit a cox model and select the best performing features. Then I fit a coxph model
2009 May 19
0
error glmpath()
Hi R-users! I am trying to learn how to use the glmpath package. I have a dataframe like this > dim(data) [1] 605 109 and selected the following > response <- data[,1] > features<-as.matrix(data[,3:109]) > mymodel <- glmpath(features,response, family = binomial) Error in if (lambda <= min.lambda) { : missing value where TRUE/FALSE expected Reading the glmpath pdf, I
2008 Sep 09
1
Addendum to wishlist bug report #10931 (factanal) (PR#12754)
--=-hiYzUeWcRJ/+kx41aPIZ Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: 8bit Hi, on March 10 I filed a wishlist bug report asking for the inclusion of some changes to factanal() and the associated print method. The changes were originally proposed by John Fox in 2005; they make print.factanal() display factor correlations if factanal() is called with rotation =