similar to: Quasi-Poisson regression - using parameter estimates for QAICc

Displaying 20 results from an estimated 3000 matches similar to: "Quasi-Poisson regression - using parameter estimates for QAICc"

2011 Jan 27
1
Quasi-poisson glm and calculating a qAIC and qAICc...trying to modilfy Bolker et al. 2009 function to work for a glm model
Sorry about re-posting this, it never went out to the mailing list when I posted this to r-help forum on Nabble and was pending for a few days, now that I am subscribe to the mailing list I hope that this goes out: I've been a viewer of this forum for a while and it has helped out a lot, but this is my first time posting something. I am running glm models for richness and abundances. For
2010 Jul 06
1
nls + quasi-poisson distribution
Hello R-helpers, I would like to fit a non-linear function to data (Discrete X axis, over-dispersed Poisson values on the Y axis). I found the functions gnlr in the gnlm package from Jim Lindsey: this can handle nonlinear regression equations for the parameters of Poisson and negative binomial distributions, among others. I also found the function nls2 in the software package
2012 Oct 18
2
Assessing overdispersion and using quasi model with lmer, possible?
Hello! I am trying to model data on species abundance (count data) with a poisson error distribution. I have a fixed and a random variables and thus needs a mixed model. I strongly doubt that my model is overdispersed but I don't know how to get the overdispersion parameter in a mixed model. Maybe someone can help me on this point. Secondly, it seems that quasi models cannot be implemented
2003 Jul 04
1
Quasi AIC
Dear all, Using the quasibinomial and quasipoisson families results in no AIC being calculated. However, a quasi AIC has actually been defined by Lebreton et al (1992). In the (in my opinon, at least) very interesting book by Burnham and Anderson (1998,2002) this QAIC (and also QAICc) is covered. Maybe this is something that could be implemented in R. Take a look at page 23 in this pdf:
2008 May 07
2
Estimating QAIC using glm with the quasibinomial family
Hello R-list. I am a "long time listener - first time caller" who has been using R in research and graduate teaching for over 5 years. I hope that my question is simple but not too foolish. I've looked through the FAQ and searched the R site mail list with some close hits but no direct answers, so... I would like to estimate QAIC (and QAICc) for a glm fit using the
2011 Dec 19
0
Global model more parsimonious (minor QAICc)
Hi all, I know this a general question, not specific for any R package, even so I hope someone may give me his/her opinion on this. I have a set of 20 candidate models in a binomial GLM. The global model has 52 estimable parameters and sample size is made of about 1500 observations. The global model seems not to have problems of parameters estimability nor get troubles with the convergence of
2009 Nov 20
1
different results across versions for glmer/lmer with the quasi-poisson or quasi-binomial families: the lattest version might not be accurate...
Dear R-helpers, this mail is intended to mention a rather trange result and generate potential useful comments on it. I am not aware of another posts on this issue ( RSiteSearch("quasipoisson lmer version dispersion")). MUsing the exemple in the reference of the lmer function (in lme4 library) and turning it into a quasi-poisson or quasi-binomial analysis, we get different results,
2010 Feb 17
0
Help with sigmoidal quasi-poisson regression using glm and gnm functions
Hi everyone, I'm trying to perform the following regressions in order to compare linear vs. sigmoidal fit of the relationship between my dependent variable (y) and one explaining parameter (x2), both including the confounding effects of a third variable (x1): quasi-pois-lin <- glm(y ~ x1 + x2, family = quasipoisson(link="identity"), data=fit) quasi-pois-sig <- gnm(y ~ x1 +
2010 Sep 12
1
R-equivalent Stata command: poisson or quasipoisson?
Hello R-help, According to a research article that covers the topic I'm analyzing, in Stata, a Poisson pseudo-maximum-likelihood (PPML) estimation can be obtained with the command poisson depvar_ij ln(indepvar1_ij) ln(indepvar2_ij) ... ln(indepvarN_ij), robust I looked up Stata help for the command, to understand syntax and such: www.stata.com/help.cgi?poisson Which simply says
2011 May 18
1
Dataset Quasi Poisson
Hello, I'm looking for a dataset for Quasipoisson regression. The result must be significantly different from the classic poisson regression. You can help me? Please It is for my last university exam Thanks a lot -- View this message in context: http://r.789695.n4.nabble.com/Dataset-Quasi-Poisson-tp3533060p3533060.html Sent from the R help mailing list archive at Nabble.com.
2010 Apr 09
2
computation of dispersion parameter in quasi-poisson glm
Hi list, can anybody point me to the trick how glm is computing the dispersion parameter in quasi-poisson regression, eg. glm(...,family="quasipoisson")? Thanks &regards, Sven
2009 Apr 11
0
Sean / Re: question related to fitting overdispersion count data using lmer quasipoisson
Hey Buddy, Hope you have been doing well since last contact. If you have the answer to the following question, please let me know. If you have chance to travel up north. let me know. best, -Sean ---------- Forwarded message ---------- From: Sean Zhang <seanecon@gmail.com> Date: Sat, Apr 11, 2009 at 12:12 PM Subject: question related to fitting overdispersion count data using lmer
2009 Nov 24
1
overdispersion and quasibinomial model
I am looking for the correct commands to do the following things: 1. I have a binomial logistic regression model and i want to test for overdispersion. 2. If I do indeed have overdispersion i need to then run a quasi-binomial model, but I'm not sure of the command. 3. I can get the residuals of the model, but i need to then apply a shapiro wilk test to test them. Does anyone know the command
2003 Jan 16
3
Overdispersed poisson - negative observation
Dear R users I have been looking for functions that can deal with overdispersed poisson models. Some (one) of the observations are negative. According to actuarial literature (England & Verall, Stochastic Claims Reserving in General Insurance , Institute of Actiuaries 2002) this can be handled through the use of quasi likelihoods instead of normal likelihoods. The presence of negatives is not
2009 Apr 11
0
question related to fitting overdispersion count data using lmer quasipoisson
Dear R-helpers: I have a question related to fitting overdispersed count data using lmer. Basically, I simulate an overdispsed data set by adding an observation-level normal random shock into exp(....+rnorm()). Then I fit a lmer quasipoisson model. The estimation results are very off (see model output of fit.lmer.over.quasi below). Can someone kindly explain to me what went wrong? Many thanks in
2006 Nov 13
1
stepAIC for overdispersed Poisson
I am wondering if stepAIC in the MASS library may be used for model selection in an overdispersed Poisson situation. What I thought of doing was to get an estimate of the overdispersion parameter phi from fitting a model with all or most of the available predictors (we have a large number of observations so this should not be problematical) and then use stepAIC with scale = phi. Should this
2012 Aug 17
0
GEE with R: "double" overdispersion?
Dear R users, I work with a descrete variable (sclae 0 - 27) which is highly skwed to the right (many zeros and small numbers). I measure this variable on a control and intervention cohort 5 times a year. When I analyze analyze this varoable at each time point separately and use GLM with family quasi-Poisson (descrete outcome and two binary variables, gender and cohort, are predictors), I observe
2006 Jul 10
2
about overdispersed poisson model
Dear R users I have been looking for functions that can deal with overdispersed poisson models. According to actuarial literature (England & Verall, Stochastic Claims Reserving in General Insurance , Institute of Actiuaries 2002) this can be handled through the use of quasi likelihoods instead of normal likelihoods. However, we see them frequently in this type of data, and we would like to
2007 Apr 10
1
When to use quasipoisson instead of poisson family
It seems that MASS suggest to judge on the basis of sum(residuals(mode,type="pearson"))/df.residual(mode). My question: Is there any rule of thumb of the cutpoiont value? The paper "On the Use of Corrections for Overdispersion" suggests overdispersion exists if the deviance is at least twice the number of degrees of freedom. Are there any further hints? Thanks. -- Ronggui
2000 Apr 19
1
scale factors/overdispersion in GLM: possible bug?
I've been poking around with GLMs (on which I am *not* an expert) on behalf of a student, particularly binomial (standard logit link) nested models with overdispersion. I have one possible bug to report (but I'm not confident enough to be *sure* it's a bug); one comment on the general inconsistency that seems to afflict the various functions for dealing with overdispersion in GLMs