similar to: Help with a Loop in function

Displaying 20 results from an estimated 10000 matches similar to: "Help with a Loop in function"

2009 Nov 02
1
AR Simulation with non-normal innovations - Correct
Dear Users, I would like to simulate an AR(1) (y_t=ct1+y_t-1+e_t) model in R where the innovations are supposed to follow a t-GARCH(1,1) proccess. By t-GARCH I want to mean that: e_t=n_t*sqrt(h_t) and h_t=ct2+a*(e_t)^2+b*h_t-1. where n_t is a random variable with t-Student distribution. If someone could give some guidelines, I can going developing the model. I did it in matlab, but the loops
2009 Jan 20
0
arima.sim help
I am trying to simulate time series data for an ar(1) and ma(1) process. I want the error term to have either a t distribution with 1 degree of freedom or a normal distribution with mean=0 and sd=1. Here is my code: error.model=function(n){rnorm(n,mean=0, sd=1)} data<-arima.sim(model=list(ar=c(0.1)), n=1000, n.start=200, start.innov=rnorm(200,mean=0, sd=1), rand.gen=error.model ) data
2006 Feb 15
1
Generating random walks
Hello, here is another question, how do I generate random walk models in R? Basically, I need an AR(1) model with the phi^1 value equal to 1: Yt = c + Yt-1 + E where E is random white noise. I tried using the arima.sim command: arima.sim(list(ar=c(1)), n = 1000, rand.gen = rnorm) but got this error since the model I am generating is not stationary: Error in arima.sim(list(ar = c(1)), n =
2005 Oct 10
1
using innov in arima.sim
Hello, I have used the arima.sim function to generate a lot of time series, but to day I got som results that I didn't quite understand. Generating two time series z0 and z1 as eps <- rnorm(n, sd=0.03) z0 <- arima.sim(list(ar=c(0.9)), n=n, innov=eps) and z1 <- arima.sim(list(ar=c(0.9)), n=n, sd=0.03), I would expect z0 and z1 to be qualitatively similar. However, with n=10 the
2012 Feb 10
3
Help needed please
I have coded a time series from simulated data: simtimeseries <- arima.sim(n=1024,list(order=c(4,0,0),ar=c(2.7607, -3.8106, 2.6535, -0.9258),sd=sqrt(1))) #show roots are outside unit circle plot.ts(simtimeseries, xlab="", ylab="", main="Time Series of Simulated Data") # Yule ---------------------------------------------------------------------------- q1 <-
2012 Oct 08
1
arima.sim
Hi, I have been using arima.sim from the stats package recently, and I'm wondering why I get different results when using what seem to be the same parameters. For example, I've given examples of three different ways to run arima.sim with what I believe are the same parameters. It's my understanding from the R documentation that rnorm is the default function for rand.gen if not
2007 Feb 21
0
GLS models - bootstrapping
Dear Lillian, I tried to estimate parameters for time series regression using time series bootstrapping as described on page 434 in Davison & Hinkley (1997) - bootstrap methods and their application. This approach is based on an AR process (ARIMA model) with a regression term (compare also with page 414 in Venable & Ripley (2002) - modern applied statistics with S) I rewrote the code
2010 Aug 19
1
How to include trend (drift term) in arima.sim
I have been trying to simulate from a time series with trend but I don't see how to include the trend in the arima.sim() call. The following code illustrates the problem: # Begin demonstration program x <- c(0.168766559, 0.186874000, 0.156710548, 0.151809531, 0.144638812, 0.142106888, 0.140961714, 0.134054659, 0.138722419, 0.134037018, 0.122829846, 0.120188714,
2008 Oct 24
0
unstable MA results in ARIMA?
Dear colleagues, I am relatively new to R and time series and so I am experiencing difficulties in interpreting the output of "arima" in MA models (but not in AR models). I cannot make sense of the 1st innovations returned by "arima". In an AR(1) model I expect data[t]=phi1*data[t-1]+a[t] and in a MA(1) model data[t]=a[t]+theta1*a[t-1]. My interpretation from R-help is
2004 May 24
1
Null model for arima.sim().
In some time series simulations I'm doing, I occasionally want the model to be ``white noise'', i.e. no model at all. I thought it would be nice if I could fit this into the arima.sim() context, without making an exceptional case. I.e. one ***could*** do something to the effect if(length(model)==0) x <- rnorm(n) else x <- arima.sim(model,n) but it would be more suave if one
2007 Jul 02
0
ARIMA prediction
Hi This is my first post to this group, so apologies in advance if I get it wrong. I would like to know how the prediction for arima models works in R. I have a time series to which I fit an arima model, of varying AR and MA orders. I then use the predict function to project it forward. I have also written my own function to perform the prediction, but it gives different answers to Arima.predict
2007 Aug 23
1
Estimate Intercept in ARIMA model
Hi, All, This is my program ts1.sim <- arima.sim(list(order = c(1,1,0), ar = c(0.7)), n = 200) ts2.sim <- arima.sim(list(order = c(1,1,0), ar = c(0.5)), n = 200) tdata<-ts(c(ts1.sim[-1],ts2.sim[-1])) tre<-c(rep(0,200),rep(1,200)) gender<-rbinom(400,1,.5) x<-matrix(0,2,400) x[1,]<-tre x[2,]<-gender fit <- arima(tdata, c(1, 1, 0), method = "CSS",xreg=t(x))
2009 Sep 29
0
Incoherence between arima.sim and auto.arima
Hello, I have a question about function arima.sim I tried to somulate a AR(1) process, with no innovation, no error term. I used this code: library(forecast) e=rnorm(100,mean=0,sd=0) series=arima.sim(model=list(ar=0.75),n=100,innov=e)+20 Then I tried to applicate ti this series auto.arima function: mod1<-auto.arima(series,stepwise=FALSE,trace=TRUE,ic='aicc') The best model returned
2006 Mar 07
1
coding problems
hi, I am trying to fit an ARIMA model to some time series data, I have used differencing to make the data stationary. dailyibm is the data I am using, could someone please help out in identifying the coding as I can't seem to identify the problem many thanks > fit.ma <- arima.sim(dailyibm - mean(dailyibm), model=list(order=c(0,1,0)),n = 3333) Error in inherits(x,
2009 Jul 21
0
Specifying initial values for arima.sim
Hi Everyone, I'm having a problem with arima.sim. Namely specifying inital values for the series. If I generate a random walk > vs = rnorm(100,0,1) > xs = cumsum(vs) and fit an ARIMA(1,0,0) to it > xarima = arima(xs,order=c(1,0,0)) > xarima Call: arima(x = xs, order = c(1, 0, 0)) Coefficients: ar1 intercept 0.9895 8.6341 s.e. 0.0106 6.1869 I should
2007 Jul 14
0
ts model challenge (transfer function)
Dear useRs, I am trying to model a time series with a transfer function. I think it can be put into the ARMA framework, and estimated with the 'arima' function (and others have made similar comments on this list). I have tried to do that, but the results have so far been disappointing. Maybe I am trying to make 'arima' do something it can't... The data are time series of
2007 Jan 16
2
ARIMA xreg and factors
I am using arima to develop a time series regression model, I am using arima b/c I have autocorrelated errors. Several of my independent variables are categorical and I have coded them as factors . When I run ARIMA I don't get any warning or error message, but I do not seem to get estimates for all the levels of the factor. Can/how does ARIMA handle factors in xreg? here is some example
2007 Mar 07
1
Failure to run mcsamp() in package arm
Dear r-helpers, I can run the examples on the mcsamp help page. For example: **************************************** > M1 <- lmer (y1 ~ x + (1|group)) > (M1.sim <- mcsamp (M1)) fit using lmer, 3 chains, each with 1000 iterations (first 500 discarded) n.sims = 1500 iterations saved mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff beta.(Intercept)
2008 Jul 12
1
Help with arima.sim
Hey, as a bloddy beginner in R I want to simulate a Arima (2,1,0) process with R. My problem is, that I don't know how to specify the AR. For a ARIMA(1,1,0) I use the following syntax: S <- arima.sim(list(order=c(1,1,0), ar=0.9), n=100). I think it is a stupid question with an easy answer. But when I google the only results are arima.sim for an ARIMA (1,1,0). Regards, Chris --
2005 Oct 02
2
arima.sim bug?
Hi, I am using the arima.sim function to generate some AR time series. However, the function does not seem to produce exactly the same time series when I specify the innov parameter. For example > r <- rnorm(300) > x <- arima.sim(300, model=list(order=c(1,0,0),ar=c(.96)), innov=r, n.start=10) > y <- arima.sim(300, model=list(order=c(1,0,0),ar=c(.96)), innov=r, n.start=10) >