Displaying 20 results from an estimated 500 matches similar to: "lmer and estimable"
2005 Nov 23
3
Infinite recursion in S3 methods crashes R on windows (related to PR#8203?)
Hi,
Infinite recursion in S3 methods seem to crash R on Windows 2000 (R
terminating with the ("Rgui.exe has generated errors...") message,
rather than throwing an error. This happens with both Rgui and Rterm.
The following toy example triggers this:
myf <- function(x, ...)
UseMethod("myf")
myf.default <- function(x, ...)
myf(x)
myf(1)
...R crashes...
Which I
2010 Apr 13
2
Help required with png graphic production as text has shadows?
I have produced a series of graphs with the png command, however when I have finally printed these out the black text appears to have a colour shadow with blue or red on either side of the letter.
I tried increasing my res to 1200 and this improved it somewhat, but the text is still not sharp and occassionally these "shadows" will still print.
I initially thought this was an issue with
2006 May 06
2
How to test for significance of random effects?
Dear list members,
I'm interested in showing that within-group statistical dependence is
negligible, so I can use ordinary linear models without including random
effects. However, I can find no mention of testing a model with vs.
without random effects in either Venable & Ripley (2002) or Pinheiro and
Bates (2000). Our in-house statisticians are not familiar with this,
either,
2004 Aug 11
1
Fwd: Enduring LME confusion… or Psychologists and Mixed-Effects
In my undertstanding of the problem, the model
lme1 <- lme(resp~fact1*fact2, random=~1|subj)
should be ok, providing that variances are homogenous both between &
within subjects. The function will sort out which factors &
interactions are to be compared within subjects, & which between
subjects. The problem with df's arises (for lme() in nlme, but not in
lme4), when
2005 Jul 18
1
Nested ANOVA with a random nested factor (how to use the lme function?)
Hi,
I am having trouble using the lme function to perform a nested ANOVA
with a random nested factor.
My design is as follows:
Location (n=6) (Random)
Site nested within each Location (n=12) (2 Sites nested within each
Location) (Random)
Dependent variable: sp (species abundance)
By using the aov function I can generate a nested ANOVA, however this
assumes that my nested
2006 Oct 08
2
latex and anova.lme problem
Dear R-helpers,
When I try
> anova(txtE2.lme, txtE2.lme1)
Model df AIC BIC logLik Test L.Ratio p-value
txtE2.lme 1 10 8590 8638 -4285
txtE2.lme1 2 7 8591 8624 -4288 1 vs 2 6.79 0.0789
> latex(anova(txtE2.lme, txtE2.lme1))
Error: object "n.group" not found
I don't even see n.group as one of the arguments of latex()
I checked to see
>
2004 Aug 10
4
Enduring LME confusion… or Psychologists and Mixed-Effects
Dear ExpeRts,
Suppose I have a typical psychological experiment that is a
within-subjects design with multiple crossed variables and a continuous
response variable. Subjects are considered a random effect. So I could model
> aov1 <- aov(resp~fact1*fact2+Error(subj/(fact1*fact2))
However, this only holds for orthogonal designs with equal numbers of
observation and no missing values.
2005 Sep 19
1
How to mimic pdMat of lme under lmer?
Dear members,
I would like to switch from nlme to lme4 and try to translate some of my
models that worked fine with lme.
I have problems with the pdMat classes.
Below a toy dataset with a fixed effect F and a random effect R. I gave
also 2 similar lme models.
The one containing pdLogChol (lme1) is easy to translate (as it is an
explicit notation of the default model)
The more parsimonious
2008 Oct 15
2
Network meta-analysis, varConstPower in nlme
Dear Thomas Lumley, and R-help list members,
I have read your article "Network meta-analysis for indirect treatment
comparisons" (Statist Med, 2002) with great interest. I found it very
helpful that you included the R code to replicate your analysis;
however, I have had a problem replicating your example and wondered if
you are able to give me a hint. When I use the code from the
2006 Jan 31
1
lme in R (WinXP) vs. Splus (HP UNIX)
R2.2 for WinXP, Splus 6.2.1 for HP 9000 Series, HP-UX 11.0.
I am trying to get a handle on why the same lme( ) code gives
such different answers. My output makes me wonder if the
fact that the UNIX box is 64 bits is the reason. The estimated
random effects are identical, but the fixed effects are very
different. Here is my R code and output, with some columns
and rows deleted for space
2008 Jul 30
1
Mixed effects model where nested factor is not the repeated across treatments lme???
Hi,
I have searched the archives and can't quite confirm the answer to this.
I appreciate your time...
I have 4 treatments (fixed) and I would like to know if there is a
significant difference in metal volume (metal) between the treatments.
The experiment has 5 blocks (random) in each treatment and no block is
repeated across treatments. Within each plot there are varying numbers
of
2005 Oct 28
2
Random effect models
Dear R-users,
Sorry for reposting. I put it in another way :
I want to test random effects in this random effect model :
Rendement ~ Pollinisateur (random) + Lignee (random) + Pollinisateur:Lignee (random)
Of course :
summary(aov(Rendement ~ Pollinisateur * Lignee, data = mca2))
gives wrong tests for random effects.
But :
summary(aov1 <- aov(Rendement ~ Error(Pollinisateur * Lignee), data =
2004 Oct 08
1
Bug in nlme under version 2.0.0
Dear all,
Under version 2.0.0, I get the error below when calling summary() on a lme-object, whereas it works under version 1.9.1 (well, it did last week, before I upgraded). Any help on this?
Thx in advance
S??ren
> library(nlme)
> mf <- formula(Weight~Cu*(Time+I(Time^2)+I(Time^3)))
> lme1 <- lme(mf, data = dietox, random=~1|Pig)
> summary(lme1)
Linear mixed-effects model fit
2005 May 09
1
bootstap and lme4
Hi,
I am trying to get bootstrap confidence intervals on variance
components and related statistics. To calculate the variance components
I use the package lme4.
> off.fun <- function(data, i){
d <- data[i,]
lme1<- lmer(y ~ trt + (trt-1|group), d)
VarCorr(lme1)@reSumry$group[2,1] #just as an example
}
> off.boot <- boot(data=data.sim, statistic=off.fun, R=100)
If
2009 Aug 14
1
post hoc test after lme
Hi!
I am quiet new with R and I have some problems to perform a posthoc test
with an lme model.
My model is the following:
>lme1<-lme(eexp~meal+time, random=~1|id,na.action=na.omit)
and then i try to get a post hoc test:
>summary(glht(lme1,linfct=mcp(meal="Tukey)))
but I get a warning message: Erreur dans as.vector(x, mode) : argument
'mode' incorrect
Thank you for your
2005 Apr 05
1
nlme & SASmixed in 2.0.1
I assigned a class the first problem in Pinheiro & Bates, which uses the
data set PBIB from the SASmixed package. I have recently downloaded
2.0.1 and its associated packages. On trying
library(SASmixed)
data(PBIB)
library(nlme)
plot(PBIB)
I get a warning message
Warning message:
replacing previous import: coef in: namespaceImportFrom(self,
asNamespace(ns))
after library(nlme) and a
2009 Apr 01
3
How to prevent inclusion of intercept in lme with interaction
Dear friends of lme,
After so many year with lme, I feel ashamed that I cannot get this to work.
Maybe it's a syntax problem, but possibly a lack of understanding.
We have growth curves of new dental bone that can well be modeled by a
linear growth curve, for two different treatments and several subjects as
random parameter. By definition, newbone is zero at t=0, so I tried to force
the
2010 Sep 16
1
Help for an absolutely r-noob
Hello together,
I am an absolute noob in R and therefore I need help urgently. I have
received a script from my tutor with plot functions in it. However, I can'
manage to adapt these plots.
The hole script is as follows:
setwd("E:/")
##### (1) Read data ###
dat <- read.table("Komfort_Tatsaechliche_ID_Versuchsreihe_1.txt",
header=TRUE,
sep="\t",
2001 Dec 23
1
aov for mixed model (fixed and random)?
I'm starting to understand fixed and random effects, but I'm
puzzled a bit. Here is an example from Hays's textbook (which is
great at explaining fixed vs. random effects, at least to dummies
like me), from the section on mixed models. You need
library(nlme) in order to run it.
------
task <- gl(3,2,36) # Three tasks, a fixed effect.
subj <- gl(6,6,36) # Six subjects, a random
2005 Oct 30
1
Help with Subtracting an effect from a Mixed Model
Hi Everyone,
I posted a similar question about a week ago, but haven't gotten any
replies -- I'm afraid that's because my previous question was too
vague. Let me try again with a more specific question, and I hope
someone can help. NOTE, I know I should be using the newer lme4
package, I just haven't had a chance to update my version of R yet, so
the question below relates