similar to: gamm (mgvc) and time-varying coefficient model

Displaying 20 results from an estimated 3000 matches similar to: "gamm (mgvc) and time-varying coefficient model"

2010 Apr 14
2
GAMM : how to use a smoother for some levels of a variable, and a linear effect for other levels?
Hi, I was reading the book on "Mixed Effects Models and Extensions in Ecology with R" by Zuur et al. In Section 6.2, an example is discussed where a gamm-model is fitted, with a smoother for time, which differs for each value of ID (4 different bird species). In earlier versions of R, the following code was used BM2<-gamm(Birds~Rain+ID+
2006 Nov 07
1
gamm(): nested tensor product smooths
I'd like to compare tests based on the mixed model representation of additive models, testing among others y=f(x1)+f(x2) vs y=f(x1)+f(x2)+f(x1,x2) (testing for additivity) In mixed model representation, where X represents the unpenalized part of the spline functions and Z the "wiggly" parts, this would be: y=X%*%beta+ Z_1%*%b_1+ Z_2%*%b_2 vs y=X%*%beta+ Z_1%*%b_1+ Z_2%*%b_2 + Z_12
2012 Apr 02
1
gamm: tensor product and interaction
Hi list, I'm working with gamm models of this sort, using Simon Wood's mgcv library: gm<- gamm(Z~te(x,y),data=DATA,random=list(Group=~1)) gm1<-gamm(Z~te(x,y,by=Factor)+Factor,data=DATA,random=list(Group=~1)) with a dataset of about 70000 rows and 110 levels for Group in order to test whether tensor product smooths vary across factor levels. I was wondering if comparing those two
2011 Jun 24
2
mgcv:gamm: predict to reflect random s() effects?
Dear useRs, I am using the gamm function in the mgcv package to model a smooth relationship between a covariate and my dependent variable, while allowing for quantification of the subjectwise variability in the smooths. What I would like to do is to make subjectwise predictions for plotting purposes which account for the random smooth components of the fit. An example. (sessionInfo() is at
2007 Oct 09
2
Help with gamm errors
Dear All Hopefully someone out there can point out what I am missing! I have a (large, several hundred) dataset of gardens in which over two years the presence/absence of a particular bird species is noted each week. I have good reason to believe there is a difference between the two years in the weekly proportion of gardens and would like to assess this, before going on to look in more detail at
2008 May 21
2
an unknown error message when using gamm function
Dear everyone, I'm encountering an unknown error message when using gamm function: > fitoutput <- gamm(cvd~as.factor(dow)+pm10+s(time,bs="cr",k=15,fx=TRUE)+s(tmean,bs="cr",k=7,fx=TRUE) + ,correlation=corAR1(form=~1|city),family=poisson,random=list(city=~pm10),data=mimp) Maximum number of PQL iterations: 20 iteration 1 iteration 2 iteration 3 iteration 4
2013 Jun 07
1
gamm in mgcv random effect significance
Dear R-helpers, I'd like to understand how to test the statistical significance of a random effect in gamm. I am using gamm because I want to test a model with an AR(1) error structure, and it is my understanding neither gam nor gamm4 will do the latter. The data set includes nine short interrupted time series (single case designs in education, sometimes called N-of-1 trials in medicine)
2007 Oct 02
3
mcv package gamm function Error in chol(XVX + S)
Hi all R users ! I'm using gamm function from Simon Wood's mgcv package, to fit a spatial regression Generalized Additive Mixed Model, as covariates I have the geographical longitude and latitude locations of indexed data. I include a random effect for each district (dist) so the code is fit <- gamm(y~s(lon,lat,bs="tp", m=2)+offset(log(exp.)), random=list(dist=~1),
2010 May 28
1
Comparing and Interpreting GAMMs
Dear R users I have a question related to the interpretation of results based on GAMMs using Simon Woods package gamm4. I have repeated measurements (hours24) of subjects (vpnr) and one factor with three levels (pred). The outcome (dv) is binary. In the first model I'd like to test for differences among factor levels (main effects only): gamm.11<-gamm4(dv ~ pred +s(hours24), random = ~
2012 Feb 17
2
Error message in gamm. Problem with temporal correlation structure
HELLO ALL, I AM GETTING AN ERROR MESSAGE WHEN TRYING TO RUN A GAMM MODEL LIKE THE ONE BELOW. I AM USING R VERSION 2.14.1 (2011-12-22) AND MGCV 1.7-12. M1 <-gamm(DepVar ~ Treatment + s(Year, by =Treatment), random=list(Block=~1), na.action=na.omit, data = mydata, correlation = corARMA(form =~ Year|Treatment, p = 1, q = 0)) THIS IS THE ERROR MESSAGE Error in `*tmp*`[[k]] : attempt to
2006 Dec 04
1
package mgcv, command gamm
Hi I am an engineer and am running the package mgcv and specifically the command gamm (generalized additive mixed modelling), with random effects. i have a few queries: 1. When I run the command with 1000/2000 observations, it runs ok. However, I would like to see the results as in vis.gam command in the same package, with the 3-d visuals. It appears no such option is available for gamm in the
2018 Apr 18
0
mgcv::gamm error when combining random smooths and correlation/autoregressive term
I am having difficulty fitting a mgcv::gamm model that includes both a random smooth term (i.e. 'fs' smooth) and autoregressive errors. Standard smooth terms with a factor interaction using the 'by=' option work fine. Both on my actual data and a toy example (below) I am getting the same error so am inclined to wonder if this is either a bug or a model that gamm is simply unable
2006 Jul 03
1
gamm
Hello, I am a bit confused about gamm in mgcv. Consulting Wood (2006) or Ruppert et al. (2003) hasn't taken away my confusion. In this code from the gamm help file: b2<-gamm(y~s(x0)+s(x1)+s(x2)+s(x3),family=poisson,random=list(fac=~1)) Am I correct in assuming that we have a random intercept here....but that the amount of smoothing is also changing per level of the
2010 Aug 04
2
more questions on gam/gamm(mgcv)...
Hi R-users, I'm using R 2.11.1, mgcv 1.6-2 to fit a generalized additive mixed model. I'm new to this package...and just got more and more problems... 1. Can I include correlation and/or random effect into gam( ) also? or only gamm( ) could be used? 2. I want to estimate the smoothing function s(x) under each level of treatment. i.e. different s(x) in each level of treatment. shall I
2008 Oct 16
0
R package: autocorrelation in gamm
Dear users I am fitting a Generalized Additive Mixed Models (gamm) model to establish possible relationship between explanatory variables (water temperature, dissolved oxygen and chlorophyll) and zooplankton data collected in the inner and outer estuarine waters. I am using monthly time-series which are auto-correlated. In the case of the inner waters, I have applied satisfactoryly (by
2010 Jun 16
3
mgcv, testing gamm vs lme, which degrees of freedom?
Dear all, I am using the "mgcv" package by Simon Wood to estimate an additive mixed model in which I assume normal distribution for the residuals. I would like to test this model vs a standard parametric mixed model, such as the ones which are possible to estimate with "lme". Since the smoothing splines can be written as random effects, is it correct to use an (approximate)
2011 Oct 05
2
gamm: problems with corCAR1()
Dear all, I?m analyzing this dataset containing biodiversity indices, measured over time (Week), and at various contaminant concentrations (Treatment). We have two replicates (Replicate) per treatment. I?m looking for the effects of time (Week) and contaminant concentration (Treatment) on diversity indices (e.g. richness). Initial analysis with GAM models showed temporal autocorrelation of
2008 Nov 15
1
GAMs and GAMMS with correlated acoustic data
Greetings This is a long email. I'm struggling with a data set comprising 2,278 hydroacoustic estimates of fish biomass density made along line transects in two lakes (lakes Michigan and Huron, three years in each lake). The data represent lakewide surveys in each year and each data point represents the estimate for a horizontal interval 1 km in length. I'm interested in comparing
2011 Mar 23
1
how to add in interaction terms in gamm
I want to use gamm to generate smoothed trend line for three groups identified by dummy variable genea and geneb. My question is how to add in an interaction term between the time and another dummy variable such as gender? fitm<-gamm(change_gfr~ genea+geneb+s(timea_n,bs="ps")+s(timeb_n,bs="ps")+s(timec_n,bs="ps"),data=mm,random=list(time_n=~1|PID)) -- View this
2011 Mar 10
2
ERROR: gamm function (mgcv package). attempt to set an attribute on NULL
Hello:I run a gamm with following call :mode<-gamm(A~B,random=list(ID=~1),family=gaussian,na.action=na.omit,data=rs)an error happened:ERROR names(object$sp) <- names(G$sp) : attempt to set an attribute on NULLwith mgcv version 1.7-3What so? How can I correct the Error? Thanks very much for any help. [[alternative HTML version deleted]]