Displaying 20 results from an estimated 6000 matches similar to: "survival package test stats"
2008 Apr 21
2
Trend test for survival data
Hello,
is there a R package that provides a log rank trend test
for survival data in >=3 treatment groups?
Or are there any comparable trend tests for survival data in R?
Thanks a lot
Markus
--
Dipl. Inf. Markus Kreuz
Universitaet Leipzig
Institut fuer medizinische Informatik, Statistik und Epidemiologie (IMISE)
Haertelstr. 16-18
D-04107 Leipzig
Tel. +49 341 97 16 276
Fax. +49 341 97 16
2008 Mar 03
1
Problem plotting curve on survival curve
Calum had a long question about drawing survival curves after fitting a Weibull
model, using pweibull, which I have not reproduced.
It is easier to get survival curves using the predict function. Here is a
simple example:
> library(survival)
> tfit <- survreg(Surv(time, status) ~ factor(ph.ecog), data=lung)
> table(lung$ph.ecog)
0 1 2 3 <NA>
63 113 50 1
2010 Feb 16
1
survival - ratio likelihood for ridge coxph()
It seems to me that R returns the unpenalized log-likelihood for the ratio likelihood test when ridge regression Cox proportional model is implemented. Is this as expected?
In the example below, if I am not mistaken, fit$loglik[2] is unpenalized log-likelihood for the final estimates of coefficients. I would expect to get the penalized log-likelihood. I would like to check if this is as expected.
2008 May 09
2
how to check linearity in Cox regression
Hi, I am just wondering if there is a test available for testing if a linear fit of an independent variable in a Cox regression is enough? Thanks for any suggestions.
John Zhang
____________________________________________________________________________________
[[elided Yahoo spam]]
2009 Feb 25
3
survival::survfit,plot.survfit
I am confused when trying the function survfit.
my question is: what does the survival curve given by plot.survfit mean?
is it the survival curve with different covariates at different points?
or just the baseline survival curve?
for example, I run the following code and get the survival curve
####
library(survival)
fit<-coxph(Surv(futime,fustat)~resid.ds+rx+ecog.ps,data=ovarian)
2006 Feb 28
1
ex-Gaussian survival distribution
Dear R-Helpers,
I am hoping to perform survival analyses using the "ex-Gaussian"
distribution.
I understand that the ex-Gaussian is a convolution of exponential and
Gaussian
distributions for survival data.
I checked the "survreg.distributions" help and saw that it is possible to
mix
pre-defined distributions. Am I correct to think that the following code
makes
the
2009 Oct 02
1
Weibull survival regression model with different shape parameters
Dear R users,
I'm trying to fit a parametric survival model using the survreg function
with a Weibull distribution.
I'm studying the time to death of individuals from different families
and I would like to fit different shape parameters (ie 1/scale in R) for
each of the families. I looked it up in the help pdf and on the
internet, but I couldn't find anything.
Would it be possible to
2008 Apr 17
1
survreg() with frailty
Dear R-users,
I have noticed small discrepencies in the reported estimate of the
variance of the frailty by the print method for survreg() and the
'theta' component included in the object fit:
# Examples in R-2.6.2 for Windows
library(survival) # version 2.34-1 (2008-03-31)
# discrepancy
fit1 <- survreg(Surv(time, status) ~ rx + frailty(litter), rats)
fit1
fit1$history[[1]]$theta
2014 Jul 05
1
Predictions from "coxph" or "cph" objects
Dear R users,
My apologies for the simple question, as I'm starting to learn the concepts
behind the Cox PH model. I was just experimenting with the survival and rms
packages for this.
I'm simply trying to obtain the expected survival time (as opposed to the
probability of survival at a given time t). I can't seem to find an option
from the "type" argument in the predict
2013 Apr 17
1
Bug in VGAM z value and coefficient ?
Dear,
When i multiply the y of a regression by 10, I would expect that the
coefficient would be multiply by 10 and the z value to stay constant. Here
some reproducible code to support the case.
*Ex 1*
library(mvtnorm)
library(VGAM)
set.seed(1)
x=rmvnorm(1000,sigma=matrix(c(1,0.75,0.75,1),2,2))
2009 Sep 08
1
Obtaining value of median survival for survfit function to use in calculation
Hi,
I'm sure this should be simple but I can't figure it out! I want to get the median survival calculated by the survfit function and use the value rather than just be able to print it. Something like this:
library(survival)
data(lung)
lung.byPS = survfit(Surv (time, status) ~ ph.ecog, data=lung)
# lung.byPS
Call: survfit(formula = Surv(time, status) ~ ph.ecog, data = lung)
1
2009 Nov 13
2
survreg function in survival package
Hi,
Is it normal to get intercept in the list of covariates in the output of survreg function with standard error, z, p.value etc? Does it mean that intercept was fitted with the covariates? Does Value column represent coefficients or some thing else?
Regards,
-------------------------------------------------
tmp = survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian,
2011 Jan 24
1
How to measure/rank ?variable importance when using rpart?
--- included message ----
Thus, my question is: *What common measures exists for ranking/measuring
variable importance of participating variables in a CART model? And how
can
this be computed using R (for example, when using the rpart package)*
---end ----
Consider the following printout from rpart
summary(rpart(time ~ age + ph.ecog + pat.karno, data=lung))
Node number 1: 228 observations,
2013 Jan 17
3
coxph with smooth survival
Hello users,
I would like to obtain a survival curve from a Cox model that is smooth and does not have zero differences due to no events for those particular days.
I have:
> sum((diff(surv))==0)
[1] 18
So you can see 18 days where the survival curve did not drop due to no events.
Is there a way to ask survfit to fit a nice spline for the survival??
Note: I tried survreg and it did not
2008 Jan 23
2
Parametric survival models with left truncated, right censored data
Dear All,
I would like to fit some parametric survival models using left
truncated, right censored data in R. However I am having problems
finding a function to fit parametric survival models which can handle
left truncated data.
I have tested both the survreg function in package survival:
fit1 <- survreg(Surv(start, stop, status) ~ X + Y + Z, data=data1)
and the psm function in package
2008 Oct 31
1
loglogistic cumulative distribution used by survreg
Dear all,
What is the cumulative distribution (with parameterization) used within
survreg with respect to the log-logistic distribution?
That is, how are the parameters linked to the survivor function?
Best regards,
Mario
[[alternative HTML version deleted]]
2004 Nov 23
6
Weibull survival regression
Dear R users,
Please can you help me with a relatively straightforward problem that I
am struggling with? I am simply trying to plot a baseline survivor and
hazard function for a simple data set of lung cancer survival where
`futime' is follow up time in months and status is 1=dead and 0=alive.
Using the survival package:
lung.wbs <- survreg( Surv(futime, status)~ 1, data=lung,
2010 Jul 09
4
Mysterious behavior
I had trouble with some tests for the survival suite last night that I
cannot explain.
Framework: Ubuntu Linux, R2.11.
For testing survival I have a separate directory and Makefile. I
pull everything into the local .RData, no packages, library, or
namespace. (It's easier to add test modifications to a routine in a
chain of calls).
A test of survreg + psline would fail because
2011 May 12
3
Survival Rate Estimates
Dear List,
Is there an automated way to use the survival package to generate survival
rate estimates and their standard errors? To be clear, *not *the
survivorship estimates (which are cumulative), but the survival *rate *
estimates...
Thank you in advance for any help.
Best,
Brian
[[alternative HTML version deleted]]
2012 Jun 05
1
model.frame and predvars
I was looking at how the model.frame method for lm works and comparing
it to my own for coxph.
The big difference is that I try to retain xlevels and predvars
information for a new model frame, and lm does not.
I use a call to model.frame in predict.coxph, which is why I went that
route, but never noted the difference till now (preparing for my course
in Nashville).
Could someone shed light