similar to: Random Forest

Displaying 20 results from an estimated 20000 matches similar to: "Random Forest"

2011 Oct 10
1
pmml for random forest & rules
Hi, I am having some trouble using R 2.13.1 for generating a pmml object of of class "c('randomForest.formula', 'randomForest')" I see that these methods are available: > methods(pmml) [1] pmml.coxph* pmml.hclust* pmml.itemsets* pmml.kmeans* pmml.ksvm* pmml.lm* pmml.multinom* pmml.nnet* pmml.rpart* [10] pmml.rsf* pmml.rules* pmml.survreg*
2006 Mar 29
2
missing value replacement for test data in random forest
Hi, In R, how to do missing value replacement for test data in randome forest in the way Breiman decribed. thanks in advance iris
2011 Sep 13
1
class weights with Random Forest
Hi All, I am looking for a reference that explains how the randomForest function in the randomForest package uses the classwt parameter. Here: http://tolstoy.newcastle.edu.au/R/e4/help/08/05/12088.html Andy Liaw suggests not using classwt. And according to: http://r.789695.n4.nabble.com/R-help-with-RandomForest-classwt-option-td817149.html it has "not been implemented" as of 2007.
2004 Mar 02
1
some question regarding random forest
Hi, I had two questions regarding random forests for regression. 1) I have read the original paper by Breiman as well as a paper dicussing an application of random forests and it appears that the one of the nice features of this technique is good predictive ability. However I have some data with which I have generated a linear model using lm(). I can get an RMS error of 0.43 and an R^2 of
2002 Apr 02
2
random forests for R
Hi all, There is now a package available on CRAN that provides an R interface to Leo Breiman's random forest classifier. Basically, random forest does the following: 1. Select ntree, the number of trees to grow, and mtry, a number no larger than number of variables. 2. For i = 1 to ntree: 3. Draw a bootstrap sample from the data. Call those not in the bootstrap sample the
2002 Apr 02
2
random forests for R
Hi all, There is now a package available on CRAN that provides an R interface to Leo Breiman's random forest classifier. Basically, random forest does the following: 1. Select ntree, the number of trees to grow, and mtry, a number no larger than number of variables. 2. For i = 1 to ntree: 3. Draw a bootstrap sample from the data. Call those not in the bootstrap sample the
2010 Mar 01
1
Random Forest prediction questions
Hi, I need help with the randomForest prediction. i run the folowing code: > iris.rf <- randomForest(Species ~ ., data=iris, > importance=TRUE,keep.forest=TRUE, proximity=TRUE) > pr<-predict(iris.rf,iris,predict.all=T) > iris.rf$votes[53,] setosa versicolor virginica 0.0000000 0.8074866 0.1925134 > table(pr$individual[53,])/500 versicolor virginica 0.928
2004 Apr 18
2
outliers using Random Forest
Hello, Does anybody know if the outscale option of randomForest yields the standarized version of the outlier measure for each case? or the results are only the raw values. Also I have notice that this measure presents very high variability. I mean if I repeat the experiment I am getting very different values for this measure and it is hard to flag the outliers. This does not happen with two other
2010 Jan 11
1
Help me! using random Forest package, how to calculate Error Rates in the training set ?
now I am learining random forest and using random forest package, I can get the OOB error rates, and test set rate, now I want to get the training set error rate, how can I do? pgp.rf<-randomForest(x.tr,y.tr,x.ts,y.ts,ntree=1e3,keep.forest=FALSE,do.trace=1e2) using the code can get oob and test set error rate, if I replace x.ts and y.ts with x.tr and y.tr,respectively, is the error rate
2009 Apr 28
1
Problem with Random Forest predict
I am trying to run a partialPlot with Random Forest (as I have done many times before). First I run my forest... Cell is a 6 level factor that is the dependent variable - all other variables are predictors, most of these are factors as well. predCell<-randomForest(x=tempdata[-match("Cell",names(tempdata))],y=tempdata$Cell,importance=T) Then I try my partial plot to look at the
2010 Feb 16
2
Random Forest
Hi, i'm using randomForest package and i have 2 questions: 1. Can i drop one tree from an RF object? 2. i have a 300 trees forest, but when i use the predict function on new data (with predict.all=TRUE) i get only 270 votes. did i do something wrong? Thanks -- View this message in context: http://n4.nabble.com/Random-Forest-tp1557464p1557464.html Sent from the R help mailing list archive at
2012 Dec 03
2
Different results from random.Forest with test option and using predict function
Hello R Gurus, I am perplexed by the different results I obtained when I ran code like this: set.seed(100) test1<-randomForest(BinaryY~., data=Xvars, trees=51, mtry=5, seed=200) predict(test1, newdata=cbind(NewBinaryY, NewXs), type="response") and this code: set.seed(100) test2<-randomForest(BinaryY~., data=Xvars, trees=51, mtry=5, seed=200, xtest=NewXs, ytest=NewBinarY) The
2009 Jun 08
1
Random Forest % Variation vs Psuedo-R^2?
Hi all (and Andy!), When running a randomForest run in R, I get the last part of an output (with do.trace=T) that looks like this: 1993 | 0.04606 130.43 | 1994 | 0.04605 130.40 | 1995 | 0.04605 130.43 | 1996 | 0.04605 130.43 | 1997 | 0.04606 130.44 | 1998 | 0.04607 130.47 | 1999 | 0.04606 130.46 | 2000 | 0.04605 130.42 | With the first column representing the
2005 Jul 07
2
randomForest
> From: Weiwei Shi > > it works. > thanks, > > but: (just curious) > why i tried previously and i got > > > is.vector(sample.size) > [1] TRUE Because a list is also a vector: > a <- c(list(1), list(2)) > a [[1]] [1] 1 [[2]] [1] 2 > is.vector(a) [1] TRUE > is.numeric(a) [1] FALSE Actually, the way I initialize a list of known length is by
2005 Jun 30
1
randomForest error
Hello, I'm using the random forest package. One of my factors in the data set contains 41 levels (I can't code this as a numeric value - in terms of linear models this would be a random factor). The randomForest call comes back with an error telling me that the limit is 32 categories. Is there any reason for this particular limit? Maybe it's possible to recompile the module with a
2009 Apr 08
2
help with random forest package
Hello, I am a phd student in Bioinformatics and I am using the Random Forest package in order to classify my data, but I have some questions. Is there a function in order to visualize the trees, so as to get the rules? Also, could you please provide me with the code of "randomForest" function, as I would like to see how it works. I was wondering if I can get the classification having
2004 May 12
1
Random Forest with highly imbalanced data
Hi group, I am trying to do a RF with approx 250,000 cases. My objective is to determine the risk factors of a person being readmitted to hospital (response=1) or else (response=0). Only 10%, or 25,000 cases were readmitted. I've heard about down-sampling and class weight approach and am wondering if R can do it. Even some reference to articles will help. >From the statistical point
2010 Oct 22
2
Random Forest AUC
Guys, I used Random Forest with a couple of data sets I had to predict for binary response. In all the cases, the AUC of the training set is coming to be 1. Is this always the case with random forests? Can someone please clarify this? I have given a simple example, first using logistic regression and then using random forests to explain the problem. AUC of the random forest is coming out to be
2006 Feb 06
1
Classification of Imbalanced Data
Hi, I'm looking to perform a classification analysis on an imbalanced data set using random Forest and I'd like to reproduce the weighted random forest analysis proposed in the Chen, Liaw & Breiman paper "Using Random Forest to Learn Imbalanced Data"; can I use the R package randomForest to perform such analysis? What is the easiest way to accomplish this task? Thanks,
2012 Sep 27
1
Random Forest - Extract
Hello, I have two Random Forest (RF) related questions. 1. How do I view the classifications for the detail data of my training data (aka trainset) that I used to build the model? I know there is an object called predicted which I believe is a vector. To view the detail for my testset I use the below-bind the columns together. I was trying to do something similar for my trainset but