Displaying 20 results from an estimated 3000 matches similar to: "gamm(): degrees of freedom of the fit"
2010 Jun 16
3
mgcv, testing gamm vs lme, which degrees of freedom?
Dear all,
I am using the "mgcv" package by Simon Wood to estimate an additive mixed
model in which I assume normal distribution for the residuals. I would
like to test this model vs a standard parametric mixed model, such as the
ones which are possible to estimate with "lme".
Since the smoothing splines can be written as random effects, is it
correct to use an (approximate)
2004 Dec 12
2
Help : generating correlation matrix with a particular structure
Hi,
I would like to generate a correlation matrix with a
particular structure. For example, a 3n x 3n matrix :
A_(nxn) aI_(nxn) bI_(nxn)
aI_(nxn) A_(nxn) cI_(nxn)
aI_(nxn) cI_(nxn) A_(nxn)
where
- A_(nxn) is a *specified* symmetric, positive
definite nxn matrix.
- I_(nxn) is an identity matrix of order n
- a, b, c are (any) real numbers
Many attempts have been unsuccessful because a
2004 Jul 01
1
QR decomposition question
Hi all,
I wonder if this kind of questions are ok in this
list...
Quick question:
What does it mean than the rank of the QR
decomposition of a NxN matrix is N-1 ?
m: NxN matrix
qr(m)$rank equal to (N-1)
Long version:
I'm doing a manova on a matrix of 10 variables
and 16 observations.
> dim(tmp)
[1] 16 10
> fit <- manova( tmp ~ treatment*mouse )
>results <-
2018 Apr 18
0
mgcv::gamm error when combining random smooths and correlation/autoregressive term
I am having difficulty fitting a mgcv::gamm model that includes both a random smooth term (i.e. 'fs' smooth) and autoregressive errors. Standard smooth terms with a factor interaction using the 'by=' option work fine. Both on my actual data and a toy example (below) I am getting the same error so am inclined to wonder if this is either a bug or a model that gamm is simply unable
2013 Mar 15
0
Poisson and negbin gamm in mgcv - overdispersion and theta
Dear R users,
I am trying to use "gamm" from package "mgcv" to model results from a mesocosm experiment. My model is of type
M1 <- gamm(Resp ~ s(Day, k=8) + s(Day, by=C, k=8) + Flow + offset(LogVol),
data=MyResp,
correlation = corAR1(form= ~ Day|Mesocosm),
family=poisson(link=log))
where the response variable is counts, offset by the
2012 Jun 11
0
gamm (mgcv) interaction with linear term
Hello,
I am trying to fit a gamm (package mgcv) model with a smooth term, a linear term, and an interaction between the two. The reason I am using gamm rather than gam is that there are repeated measures in time (which is the smooth term x1), so I am including an AR1 autocorrelation term. The model I have so far ended up with is of the type
gamm(y ~ s(x1) + s(x1, by=x2), correlation =
2005 Apr 13
0
GAMM in mgcv - significance of smooth terms
In the summary of the gam object produced by gamm, the "Approximate
significance of smooth terms" appears to be a test of the improvement in fit
over a linear model, rather than a test of the significance of the overall
effect of x on y:
test.gamm<-gamm(y~te(x, bs="cr"), random=list(grp=~1))
summary(test.gamm$gam)
.
.
.
Approximate significance of smooth terms:
2009 May 27
1
Deviance explined in GAMM, library mgcv
Dear R-users,
To obtain the percentage of deviance explained when fitting a gam model using the mgcv library is straightforward:
summary(object.gam) $dev.expl
or alternatively, using the deviance (deviance(object.gam)) of the null and the fitted models, and then using 1 minus the quotient of deviances.
However, when a gamm (generalizad aditive mixed model) is fitted, the
2008 Oct 13
0
gamm() and predict()
Dear All,
I have a query relating to the use of the ?predict? and ?gamm? functions. I am dealing with large (approx. 5000) sets of presence/absence data, which I am trying to model as a function of different of environmental covariates. Ideally my models should include individual and colony as random factors. I have been trying to fit binomial models using the gamm function to achieve this. For
2011 Sep 22
1
negative binomial GAMM with variance structures
Hello,
I am having some difficulty converting my gam code to a correct gamm code, and I'm really hoping someone will be able to help me.
I was previously using this script for my overdispersed gam data:
M30 <-gam(efuscus~s(mic, k=7) +temp +s(date)+s(For3k, k=7) + pressure+ humidity, family=negbin(c(1,10)), data=efuscus)
My gam.check gave me the attached result. In order to
2005 Jun 03
2
using so-library involving Taucs
Dear R developers,
The trace of the hat matrix H~(n,n) is computed as follows:
tr(H) = tr(BS^-1B') = tr(S^-1B'B) := tr(X) = sum(diag(X))
with B~(n,p), S~(p,p).
Since p is of the order 10^3 but S is sparse I would like to employ
Taucs linear solver ( http://www.tau.ac.il/~stoledo/taucs/ ) on
SX = B'B.
(Further improvement by implying a looping over i=1,...,p, calling
2006 Jul 03
0
gamm and binomial data
Hello,
I have a response variable that is a time series of 0's and 1's. And a couple of continous explanatory variables.
I would like to fit a gamm with auto-correlation and binomial distribution using gamm in mgcv. Something simple like:
tmp<-gamm(y ~ s(x), correlation=corAR1(), binomial)
However, I read in various messages on this newsgroup that glmmPQL (used
2011 Dec 15
0
corCompSymm in gamm()?
Hi,
I have confirmed temporal correlation problems in my data. Is there a
possibility to use corCompSymm for a gamm()?
I am an R-beginner.
I have very short time series. There are three years and within each year,
there are 10 weeks. he 10 weeks are the same every year and have not unique
values, I seem not to be able to use AR-1 (I assume that I have too little
data for autoregression
2011 Mar 17
2
fitting gamm with interaction term
Hi all,
I would like to fit a gamm model of the form:
Y~X+X*f(z)
Where f is the smooth function and
With random effects on X and on the intercept.
So, I try to write it like this:
gam.lme<- gamm(Y~ s(z, by=X) +X, random=list(groups=pdDiag(~1+X)) )
but I get the error message :
Error in MEestimate(lmeSt, grps) :
Singularity in backsolve at level 0, block 1
2006 Dec 04
1
package mgcv, command gamm
Hi
I am an engineer and am running the package mgcv and specifically the
command gamm (generalized additive mixed modelling), with random
effects. i have a few queries:
1. When I run the command with 1000/2000 observations, it runs ok.
However, I would like to see the results as in vis.gam command in the
same package, with the 3-d visuals. It appears no such option is
available for gamm in the
2011 Mar 23
1
how to add in interaction terms in gamm
I want to use gamm to generate smoothed trend line for three groups
identified by dummy variable genea and geneb. My question is how to add in
an interaction term between the time and another dummy variable such as
gender?
fitm<-gamm(change_gfr~
genea+geneb+s(timea_n,bs="ps")+s(timeb_n,bs="ps")+s(timec_n,bs="ps"),data=mm,random=list(time_n=~1|PID))
--
View this
2011 Oct 05
2
gamm: problems with corCAR1()
Dear all,
I?m analyzing this dataset containing biodiversity indices, measured over
time (Week), and at various contaminant concentrations (Treatment). We have
two replicates (Replicate) per treatment.
I?m looking for the effects of time (Week) and contaminant concentration
(Treatment) on diversity indices (e.g. richness).
Initial analysis with GAM models showed temporal autocorrelation of
2008 Oct 16
0
R package: autocorrelation in gamm
Dear users
I am fitting a Generalized Additive Mixed Models (gamm) model to
establish possible relationship between explanatory variables (water
temperature, dissolved oxygen and chlorophyll) and zooplankton data
collected in the inner and outer estuarine waters. I am using monthly
time-series which are auto-correlated.
In the case of the inner waters, I have applied satisfactoryly (by
2006 Aug 08
0
gamm question
Hello,
I have two gamm question (I am using gamm in mgcv).
1. In have, say 5 time series. Monthly data, 20 year. The 5 time series are from 5 stations. The data are in vectors, so I have fitted something along the lines of:
tmp<-gamm(Y ~ s(Year,by=station1)+s(Year,by=station2)+
s(Year,by=station3)+s(Year,by=station4)+
2005 Jan 21
0
gamm with correlation structure question
Dear group,
I am trying to use gamm() in mgcv. Here's the
scenario. The data frame has approx. 110K
observations with information on paediatric
readmission binary outcome (Y/N) and total volume of
their most responsible physician as the covariate.
Since any physician can have multiple patients, the
data contains clustering structure which I am trying
to account for. My original formula is