Displaying 20 results from an estimated 3000 matches similar to: "binomial dat set"
2007 Feb 25
0
Overdispersion in a GLM binomial model
Hello,
The share of concurring votes (i.e. yes-yes and no-no) in total votes
between a pair of voters is a function of their ideological distance (index
continuous on [1,2]).
I show by other means that the votes typically are highly positively
correlated (with an average c=0.6). This is because voters sit together and
discuss the issue before taking a vote, but also because they share common
2008 May 16
1
gam negative.binomial
Dear list members,
while I appreciate the possibility to deal with overdispersion for count
data either by specifying the family argument to be quasipoisson() or
negative.binomial(), it estimates just one overdispersion parameter for the
entire data set.
In my applications I often would like the estimate for overdispersion to
depend on the covariates in the same manner as the mean.
For example,
2005 Nov 23
2
negative binomial overdispersion question
Hello,
I'm a grad student in the Intelligent Transportation Systems lab at Portland
State Univ. in Portland, OR, USA. I'm trying to learn the basics of R to run a
negative binomial in the near future, and so I ran a test regression on roadway
crash data obtained from "Statistical and Econometric Methods for
Transportation Data Analysis" by Washington et al (p. 250). I ran the
2005 Mar 11
0
Negative binomial regression for count data,
Dear list,
I would like to know:
1. After I have used the R code (http://pscl.stanford.edu/zeroinfl.r) to fit a zero-inflated negative binomial model, what criteria I should follow to compare and select the best model (models with different predictors)?
2. How can I compare the model I get from question 1 (zero-inflated negative binomial) to other models like glm family models or a logistic
2015 Jun 25
1
Estimating overdispersion when using glm for count and binomial data
Dear All
I recently proposed a simple modification to Wedderburn's 1974 estimate
of overdispersion for count and binomial data, which is used in glm for
the quasipoisson and quasibinomial families (see the reference below).
Although my motivation for the modification arose from considering
sparse data, it will be almost identical to Wedderburn's estimate when
the data are not sparse.
2015 Jun 26
0
Estimating overdispersion when using glm for count and binomial data
Ben Bolker writes:
> This looks really useful. Base R is very conservative; despite the
> fact that it would be much more easily adopted in base R, I think it
> is much more likely to find a home in an add-on package such as aods3
> or glm2 than in base R ...
Thanks for these suggestions Ben - Simon Wood has also been in touch,
and plans to put it into mgcv
David Fletcher
Original
2010 Feb 18
0
Appropriate test for overdispersion in binomial data
Dear R users,
Overdispersion is often a problem in binomial data. I attempt to model a
binary response (sex-ratio) with three categorical explanatory variables,
using GLM, which could assume the form:
y<-cbind(sexf, sample-sexf)
model<-glm(y ~ age+month+year, binomial)
summary(model)
Output:
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 8956.7 on 582
2006 Feb 17
2
Something changed and glm(..., family=binomial) doesn't work now
I ran logistic regression models last week using glm
(...,family=binomial) and got a set of results. Since then I have
loaded the Epi package for ROC analysis. Now when I run those same
models I get completely different results, with most being:
Warning message:
fitted probabilities numerically 0 or 1 occurred in: glm.fit(x = X, y
= Y, weights = weights, start = start, etastart = etastart,
2009 Feb 16
1
Overdispersion with binomial distribution
I am attempting to run a glm with a binomial model to analyze proportion
data.
I have been following Crawley's book closely and am wondering if there is
an accepted standard for how much is too much overdispersion? (e.g. change
in AIC has an accepted standard of 2).
In the example, he fits several models, binomial and quasibinomial and then
accepts the quasibinomial.
The output for residual
2023 Oct 31
1
weights vs. offset (negative binomial regression)
[Please keep r-help in the cc: list]
I don't quite know how to interpret the difference between specifying
effort as an offset vs. as weights; I would have to spend more time
thinking about it/working through it than I have available at the moment.
I don't know that specifying effort as weights is *wrong*, but I
don't know that it's right or what it is doing: if I were
2005 Mar 03
1
Negative binomial regression for count data
Dear list,
I would like to fit a negative binomial regression model as described in "Byers AL, Allore H, Gill TM, Peduzzi PN., Application of negative binomial modeling for discrete outcomes: a case study in aging research. J Clin Epidemiol. 2003 Jun;56(6):559-64" to my data in which the response is count data. There are also 10 predictors that are count data, and I have also 3
2011 Jun 13
1
glm with binomial errors - problem with overdispersion
Dear all,
I am new to R and my question may be trivial to you...
I am doing a GLM with binomial errors to compare proportions of species in
different categories of seed sizes (4 categories) between 2 sites.
In the model summary the residual deviance is much higher than the degree
of freedom (Residual deviance: 153.74 on 4 degrees of freedom) and even
after correcting for overdispersion by
2003 Jun 10
0
binomial GAM ROC
Hello
Im a beginner on R and I would like how to develop a ROC statistic to
evaluate a GAM model with a binomial distribution (Im using mgcv package)
Thanks in advance
--
David Nogu?s Bravo
Functional Ecology and Biodiversity Department
Pyrenean Institute of Ecology
Spanish Research Council
Av. Monta?ana 1005
Zaragoza - CP 50059
976716030 - 976716019 (fax)
2010 Mar 18
0
package JM -- version 0.6-0
Dear R-users,
I'd like to announce the release of the new version of package JM (soon
available from CRAN) for the joint modelling of longitudinal and
time-to-event data using shared parameter models. These models are
applicable in mainly two settings. First, when focus is in the
time-to-event outcome and we wish to account for the effect of a
time-dependent covariate measured with
2010 Mar 18
0
package JM -- version 0.6-0
Dear R-users,
I'd like to announce the release of the new version of package JM (soon
available from CRAN) for the joint modelling of longitudinal and
time-to-event data using shared parameter models. These models are
applicable in mainly two settings. First, when focus is in the
time-to-event outcome and we wish to account for the effect of a
time-dependent covariate measured with
2009 Feb 23
1
Follow-up to Reply: Overdispersion with binomial distribution
THANKS so very much for your help (previous and future!). I have a two
follow-up questions.
1) You say that dispersion = 1 by definition ....dispersion changes from 1
to 13.5 when I go from binomial to quasibinomial....does this suggest that
I should use the binomial? i.e., is the dispersion factor more important
that the
2) Is there a cutoff for too much overdispersion - mine seems to be
2012 Feb 07
1
binomial vs quasibinomial
After looking at 48 glm binomial models I decided to try the quasibinomial
with the top model 25 (lowest AIC). To try to account for overdispersion
(residual deviance 2679.7/68 d.f.) After doing so the dispersion factor is
the same for the quasibinomial and less sectors of the beach were
significant by p-value. While the p-values in the binomial were more
significant for each section of the
2009 Nov 04
1
What happen for Negative binomial link in Lmer
Seems the message below and the thread have reveived no attention/answer. The output presented is quite tricky. Looks like if lmer (lme4 0.9975-10)
has accepted a negative binomial link with reasonable estimates, although it was not designed for...
What can one think about result validity ?
Best
Patrick
Message: 34
Date: Thu, 29 Oct 2009 06:51:24 -0700 (PDT)
From: "E. Robardet"
2004 Mar 06
2
GlmmPQL with binomial errors
Hi all!
I hope somebody can help me solve some doubts which must be very basic,
but I haven't been able to solve by myself.
The first one, is how to assess for overdispersion in GlmmPQL when fitting
binomial or poisson errors. The second one is whether GlmmPQL can compare
models with different fixed effects.
The third doubt, regards the way I should arrange my data in a GlmmPQL with
2005 Mar 23
1
Negative binomial GLMMs in R
Dear R-users,
A recent post (Feb 16) to R-help inquired about fitting
a glmm with a negative binomial distribution.
Professor Ripley responded that this was a difficult problem with the
simpler Poisson model already being a difficult case:
https://stat.ethz.ch/pipermail/r-help/2005-February/064708.html
Since we are developing software for fitting general nonlinear random
effects models we