Displaying 20 results from an estimated 9000 matches similar to: "model selection based on AICc"
2005 Nov 03
1
Help on model selection using AICc
Hi,
I'm fitting poisson regression models to counts of birds in
1x1 km squares using several environmental variables as predictors.
I do this in a stepwise way, using the stepAIC function. However the
resulting models appear to be overparametrized, since too much
variables were included.
I would like to know if there is the possibility of fitting models
by steps but using the AICc
2017 Jun 08
1
stepAIC() that can use new extractAIC() function implementing AICc
I would like test AICc as a criteria for model selection for a glm using
stepAIC() from MASS package.
Based on various information available in WEB, stepAIC() use
extractAIC() to get the criteria used for model selection.
I have created a new extractAIC() function (and extractAIC.glm() and
extractAIC.lm() ones) that use a new parameter criteria that can be AIC,
BIC or AICc.
It works as
2006 Apr 07
1
how to run stepAIC starting with NULL model?
Hello,
I'm trying to figure out how to run the stepAIC function starting with the
NULL model. I can call the null model (e.g., lm(y ~ NULL)), but using
this object in stepAIC doesn't seem to work.
The objective is to calculate AICc. This can be done if stepAIC can be
run starting with the NULL model; the (2p(p-1)/(n-p-1))to get AICc would
be added to the final step AIC value. Can
2010 Aug 17
2
how to selection model by BIC
Hi All:
the package "MuMIn" can be used to select the model based on AIC or AICc.
The code is as follows:
data(Cement)
lm1 <- lm(y ~ ., data = Cement)
dd <- dredge(lm1,rank="AIC")
print(dd)
If I want to select the model by BIC, what code do I need to use? And when
to select the best model based on AIC, what the differences between the
function "dredge" in
2004 Dec 17
0
behaviour of BIC and AICc code
Dear R-helpers
I have generated a suite of GLMs. To select the best model for each set, I am using the
meta-analysis approach of de Luna and Skouras (Scand J Statist 30:113-128). Simply
put, I am calculating AIC, AICc, BIC, etc., and then using whichever criterion
minimizes APE (Accumulated Prediction Error from cross-validations on all model sets)
to select models.
My problem arises where I
2009 Apr 29
2
AICc
I am fitting logistic regression models, by defining my own link
function, and would like to get AICc values. Using the glm command
gives a value for AIC, but I haven't been able to get R to convert
that to AICc. Is there a code that has already been written for
this? Right now I am just putting the AIC values into an excel
spreadsheet and calculating AICc, likelihood, and AIC
2006 Jul 12
2
AICc vs AIC for model selection
Hi,
I am using 'best.arima' function from forecast package to obtain point forecast for a time series data set. The documentation says it utilizes AIC value to select best ARIMA model. But in my case the sample size very small - 26 observations (demand data). Is it the right to use AIC value for model selection in this case. Should I use AICc instead of AIC. If so how can I modify
2009 Jul 10
1
generalized linear model (glm) and "stepAIC"
Hi,
I'm a very new user of R and I hope not to be too "basic" (I tried to
find the answer to my questions by other ways but I was not able to).
I have 12 response variables (species growth rates) and two
environmental factors that I want to test to find out a possible
relation.
The sample size is quite small: (7<n<12, depending on each species-case).
I performed a
2006 Dec 12
1
Calculating AICc using conditional logistic regression
I have a case-control study that I'm analysing using the conditional
logistic regression function clogit from the survival package.
I would like to calculate the AICc of the models I fit using clogit.
I have a variety of scripts that can calculate AICc for models with a
logLik method, but clogit does not appear to use this method.
Is there a way I can calculate AICc from clogit in R?
Many
2004 Dec 04
1
AIC, AICc, and K
How can I extract K (number of parameters) from an AIC calculation, both to
report K itself and to calculate AICc? I'm aware of the conversion from AIC ->
AICc, where AICc = AIC + 2K(K+1)/(n-K-1), but not sure of how K is calculated
or how to extract that value from either an AIC or logLik calculation.
This is probably more of a basic statistics question than an R question, but I
thank
2009 Apr 30
1
stepAICc
Dear R users,
Would it be difficult to change the code of stepAIC (from the MASS
library) to use AICc instead of AIC?
It would be great to know of someone has tried this already.
Best wishes
Christoph.
2011 Sep 04
2
AICc function with gls
Hi
I get the following error when I try and get the AICc for a gls regression
using qpcR:
> AICc(gls1)
Loading required package: nlme
Error in n/(n - p - 1) : 'n' is missing
My gls is like this:
> gls1
Generalized least squares fit by REML
Model: thercarnmax ~ therherbmax
Data: NULL
Log-restricted-likelihood: 2.328125
Coefficients:
(Intercept) therherbmax
1.6441405
2006 Nov 13
1
stepAIC for overdispersed Poisson
I am wondering if stepAIC in the MASS library may be used for model
selection in an overdispersed Poisson situation. What I thought of doing
was to get an estimate of the overdispersion parameter phi from fitting
a model with all or most of the available predictors (we have a large
number of observations so this should not be problematical) and then use
stepAIC with scale = phi. Should this
2011 Jul 26
1
nls - can't get published AICc and parameters
Hi
I'm trying to replicate Smith et al.'s
(http://www.sciencemag.org/content/330/6008/1216.abstract) findings by
fitting their Gompertz and logistic models to their data (given in
their supplement). I'm doing this as I want to then apply the
equations to my own data.
Try as a might, I can't quite replicate them. Any thoughts why are
much appreciated. I've tried contacting the
2002 Apr 01
0
something confusing about stepAIC
Folks, I'm using stepAIC(MASS) to do some automated, exploratory, model
selection for binomial and Poisson glm models in R 1.3. Because I wanted to
experiment with the small-sample correction AICc, I dug around in the code
for the functions
glm.fit
stepAIC
dropterm.glm
addterm.glm
extractAIC.glm
and came across something I just don't understand.
stepAIC() passes dropterm.glm() a
2012 Sep 19
0
Lowest AIC after stepAIC can be lowered by manual reduction of variables (Florian Moser)
A few general comments about stepwiseAIC and a suggestion of how to select models
a) Apart form the problem, that stepwise selection is not a garanty to get the best model, you need to have a lot of data to avoid overfitting if your model includes 7 parameter plus interactions (> 10 observations per parameter is what you are ideally looking for).
b) Have a look at Anderson and Burnham's
2009 May 05
0
stepAICc function (based on MASS:::stepAIC.default)
Dear all,
I have tried to modify the code of MASS:::stepAIC.default(), dropterm() and addterm() to use AICc instead of AIC for model selection.
The code is appended below. Somehow the calculations are still not correct and I would be grateful if anyone could have a look at what might be wrong
with this code...
Here is a working example:
##
require(nlme)
model1=lme(distance ~ age + Sex, data =
2008 Feb 26
2
AIC and anova, lme
Dear listers,
Here we have a strange result we can hardly cope with. We want to
compare a null mixed model with a mixed model with one independent
variable.
> lmmedt1<-lme(mediane~1, random=~1|site, na.action=na.omit, data=bdd2)
> lmmedt9<-lme(mediane~log(0.0001+transat), random=~1|site,
na.action=na.omit, data=bdd2)
Using the Akaike Criterion and selMod of the package pgirmess
2012 Jan 07
2
glm or transformation of the response?
Hi Dr. Snow,
I am a graduate student working on analyzing data for my thesis and came
across your post on an R forum:
The default link function for the glm poisson family is a log link, which
means that it is fitting the model:
log(mu) ~ b0 + b1 * x
But the data that you generate is based on a linear link. Therefore your
glm analysis does not match with how the data was generated
2005 Nov 29
1
saving AIC of intermediate models in step
Hi all,
I'm fitting GLM's using the step or stepAIC procedures and I would
like to save the AIC of the intermediate models. I would appreciate
very much information about how todo this.
Best wishes
Germ??n L??pez