Displaying 20 results from an estimated 3000 matches similar to: "Survival model with cross-classified shared frailties"
2008 Feb 21
2
Nested frailty model
Dear R-help,
I am trying to estimate a Cox model with nested effects, or better
h(t,v,w)=v*w*h0(t)*exp(B'x)
where h(t,v,w) is the individual hazard function
w and v are both frailty terms (gamma or normal distributed)
I have 12 clusters and for each one of them I would like to associate a
realization of v, while w is a random effect for the whole population.
At the population level
2012 Feb 03
1
coxme with frailty--variance of random effect?
Dear all,
This probably stems from my lack of understanding of the model, but I
do not understand the variance of the random effect reported in coxme.
Consider the following toy example:
#------------------------------- BEGINNING OF CODE
------------------------------------------------
library(survival)
library(coxme)
#--- Generate toy data:
d <- data.frame(id = c(1:100), #
2007 Apr 20
1
Approaches of Frailty estimation: coxme vs coxph(...frailty(id, dist='gauss'))
Dear List,
In documents (Therneau, 2003 : On mixed-effect cox
models, ...), as far as I came to know, coxme penalize
the partial likelihood (Ripatti, Palmgren, 2000) where
as frailtyPenal (in frailtypack package) uses the
penalized the full likelihood approach (Rondeau et al,
2003).
How, then, coxme and coxph(...frailty(id,
dist='gauss')) differs? Just the coding algorithm, or
in
2011 Dec 30
2
Joint modelling of survival data
Assume that we collect below data : -
subjects = 20 males + 20 females, every single individual is independence,
and difference
events = 1, 2, 3... n
covariates = 4 blood types A, B, AB, O
http://r.789695.n4.nabble.com/file/n4245397/CodeCogsEqn.jpeg
?m = hazards rates for male
?n = hazards rates for female
Wm = Wn x ?, frailty for males, where ? is the edge ratio of male compare to
female
Wn =
2002 Oct 08
2
Frailty and coxph
Does someone know the rules by which 'coxph' returns 'frail', the
predicted frailty terms? In my test function:
-----------------------------------------------
fr <- function(){
#testing(frailty terms in 'survival'
require(survival)
dat <- data.frame(exit = 1:6,
event = rep(1, 6),
x = rep(c(0, 1), 3),
2005 Sep 07
1
Survival analysis with COXPH
Dear all,
I would have some questions on the coxph function for survival analysis,
which I use with frailty terms.
My model is:
mdcox<-coxph(Surv(time,censor)~ gender + age + frailty(area, dist='gauss'),
data)
I have a very large proportion of censored observations.
- If I understand correctly, the function mdcox$frail will return the random
effect estimated for each group on the
2005 Jul 21
1
output of variance estimate of random effect from a gamma frailty model using Coxph in R
Hi,
I have a question about the output for variance of random effect from a gamma
frailty model using coxph in R. Is it the vairance of frailties themselves or
variance of log frailties? Thanks.
Guanghui
2007 Dec 05
4
coxme frailty model standard errors?
Hello,
I am running R 2.6.1 on windows xp
I am trying to fit a cox proportional hazard model with a shared
Gaussian frailty term using coxme
My model is specified as:
nofit1<-coxme(Surv(Age,cen1new)~ Sex+bo2+bo3,random=~1|isl,data=mydat)
With x1-x3 being dummy variables, and isl being the community level
variable with 4 levels.
Does anyone know if there is a way to get the standard error
2011 Jun 25
2
cluster() or frailty() in coxph
Dear List,
Can anyone please explain the difference between cluster() and
frailty() in a coxph? I am a bit puzzled about it. Would appreciate
any useful reference or direction.
cheers,
Ehsan
> marginal.model <- coxph(Surv(time, status) ~ rx + cluster(litter), rats)
> frailty.model <- coxph(Surv(time, status) ~ rx + frailty(litter), rats)
> marginal.model
Call:
coxph(formula =
2012 Feb 10
0
coxme with frailty
A couple of clarifications for you.
1. I write mixed effects Cox models as exp(X beta + Z b), beta = fixed
effects coefficients and b = random effects coefficients. I'm using
notation that is common in linear mixed effects models (on purpose).
About 2/3 of the papers use exp(X beta)* c, i.e., pull the random
effects out of the exponent. Does it make a difference? Not much: b
will be
2004 Nov 24
1
OOT: frailty-multinivel
Hola!
I started to search for information about multilevel survival models, and
found frailty in R. This seems to be something of the same, is it the same?
Then: why the name frailty (weekness?)
--
Kjetil Halvorsen.
Peace is the most effective weapon of mass construction.
-- Mahdi Elmandjra
2004 Nov 17
1
frailty and time-dependent covariate
Hello,
I'm trying to estimate a cox model with a frailty variable and time-dependent covariate (below there is the statement I use and the error message). It's seems to be impossible, because every time I add the time-dependent covariate the model doesn't converge. Instead, if I estimate the same model without the time-dependent covariate it's converge. I'd like knowing if
2010 Jul 22
2
Multilevel survival model
* Please cc me if you reply as I am a digest subscriber *
Hi,
I am wondering how I can run a multilevel survival model in R? Below is
some of my data.
> head(bi0.test)
childid famid lifedxm sex age delta
1 22.02 22 CONTROL MALES 21.36893 0
2 13.02 13 MAJOR MALES 21.18001 0
3 64.02 64 CONTROL MALES 20.09377 0
4 5.02 5 CONTROL FEMALES
2012 Dec 03
1
fitting a gamma frailty model (coxph)
Dear all,
I have a data set<http://yaap.it/paste/c11b9fdcfd68d02b#gIVtLrrme3MaiQd9hHy1zcTjRq7VsVQ8eAZ2fol1lUc=>with
6 clusters, each containing 48 (possibly censored, in which case
"event = 0") survival times. The "x" column contains a binary explanatory
variable. I try to describe that data with a gamma frailty model as follows:
library(survival)
mod <-
2004 Nov 08
1
coxph models with frailty
Dear R users:
I'm generating the following survival data:
set.seed(123)
n=200 #sample size
x=rbinom(n,size=1,prob=.5) #binomial treatment
v=rgamma(n,shape=1,scale=1) #gamma frailty
w=rweibull(n,shape=1,scale=1) #Weibull deviates
b=-log(2) #treatment's slope
t=exp( -x*b -log(v) + log(w) ) #failure times
c=rep(1,n) #uncensored indicator
id=seq(1:n) #individual frailty indicator
2009 Jan 07
0
Frailty by strata interactions in coxph (or coxme)?
Hello,
I was hoping that someone could answer a few questions for me (the background is given below):
1) Can the coxph accept an interaction between a covariate and a frailty term
2) If so, is it possible to
a) test the model in which the covariate and the frailty appear as main terms using the penalized likelihood (for gaussian/t frailties)
b)augment model 1) by stratifying on the variable that
2005 May 31
1
Shared Frailty in survival package (left truncation, time-dep. covariates)
Dear list,
I want o fit a shared gamma frailty model with the frailty specification in the survival package.
I have partly left-truncated data and time-dependent covariates. Is it possible to
combine these two things in the frailty function. Or are the results wrong if I use data in the start-stop-formulation which account for delayed entry?
Is the frailty distribution updated in the
2011 Apr 08
1
Variance of random effects: survreg()
I have the following questions about the variance of the random effects in the survreg() function in the survival package:
1) How can I extract the variance of the random effects after fitting a model?
For example:
set.seed(1007)
x <- runif(100)
m <- rnorm(10, mean = 1, sd =2)
mu <- rep(m, rep(10,10))
test1 <- data.frame(Time = qsurvreg(x, mean = mu, scale= 0.5, distribution =
2007 Sep 12
1
enquiry
Dear R-help,
I am trying to estimate a Cox model with nested effects basing on the
minimization of the overall AIC; I have two frailties terms, both gamma
distributed. There is a error message (theta2 argument misses) and I
don?t understand why. I would like to know what I have wrong. Thank you
very much for your time.
fitM7 <- coxph(Surv(lifespan,censured) ~ south + frailty(id,
2013 Oct 09
1
frailtypack
I can't comment on frailtypack issues, but would like to mention that coxme will handle
nested models, contrary to the statement below that "frailtypack is perhaps the only ....
for nested survival data".
To reprise the original post's model
cgd.nfm <- coxme(Surv(Tstart, Tstop, Status) ~ Treatment + (1 | Center/ID), data=cgd.ag)
And a note to the poster-- you should