similar to: contrast {Design} question

Displaying 20 results from an estimated 6000 matches similar to: "contrast {Design} question"

2010 May 17
3
applying quantile to a list using values of another object as probs
Hi r-users, I have a matrix B and a list of 3x3 matrices (mylist). I want to calculate the quantiles in the list using each of the value of B as probabilities. The codes I wrote are: B <- matrix (runif(12, 0, 1), 3, 4) mylist <- lapply(mylist, function(x) {matrix (rnorm(9), 3, 3)}) for (i in 1:length(B)) { quant <- lapply (mylist, quantile, probs=B[i]) } But quant
2010 May 16
1
problems with generation of quantiles under For ()
Dear, I want to make an application to calculate quantile within a For() I tried the following without success: ej. date p_val <- matrix(sample(10, 1000, replace=TRUE), 200,5) test 1 rr <- paste("p_val$",names(p_val[1]), sep="") quant <- quantile(rr, probs = c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100)/100, na.rm=FALSE, type=1) test 2 rr <-
2008 Sep 17
1
ANOVA contrast matrix vs. TukeyHSD?
Dear Help List, Thanks in advance for reading...I hope my questions are not too ignorant. I have an experiment looking at evolution of wing size [centroid] in fruitflies and the effect of 6 different experimental treatments [treatment]. I have five replicate populations [replic] in each treatment and have reared the flies in two different temperatures [cond] to assay the wing size, making
2007 Feb 14
1
se.contrast confusion
Hello, I've got what I'd expect to be a pretty simple issue: I fit an aov object using multiple error strata, and would like some significance tests for the contrasts I specified. In this contrived example, I model some test score as the interaction of a subject's gender and two emotion variables (angry, happy, neutral), measured at entry to the experiment (entry) and later
2009 Apr 25
3
Nomogram with stratified cph in Design package
Hello, I am using Dr. Harrell's design package to make a nomogram. I was able to make a beautiful one without stratifying, however, I will need to stratify to meet PH assumptions. This is where I go wrong, but I'm not sure where. Non-Stratified Nomogram:
2007 Feb 05
3
Confidence intervals of quantiles
Can anyone please tell me if there is a function to calculate confidence intervals for the results of the quantile function. Some of my data is normally distributed but some is also a squewed distribution or a capped normal distribution. Some of the data sets contain about 700 values whereas others are smaller with about 100-150 values, so I would like to see how the confidence intervals change
2012 Jul 09
1
Type II ANOVA for user-defined contrasts with covariates
I'm wondering if anyone would be able to help me out. I'm trying to use a type II ANOVA for a model with user-specified contrasts and covariates. I have two treatment groups and a control group. I'm comparing average treatment to controls and also between the two treatment groups, but I'm also looking to adjust for age and gender as covariates:
2006 Feb 15
1
no convergence using lme
Hi. I was wondering if anyone might have some suggestions about how I can overcome a problem of "iteration limit reached without convergence" when fitting a mixed effects model. In this study: Outcome is a measure of heart action Age is continuous (in weeks) Gender is Male or Female (0 or 1) Genotype is Wild type or knockout (0 or 1) Animal is the Animal ID as a factor
2005 Apr 19
1
How to make combination data
Dear R-user, I have a data like this below, age <- c("young","mid","old") married <- c("no","yes") income <- c("low","high","medium") gender <- c("female","male") I want to make some of combination data like these, age.income.dat <- expand.grid(age,
2008 Dec 03
2
changing colnames in dataframes
dear all, I'm building new dataframes from bigger one's using e.g. columns F76, F83, F90: JJ<-data.frame( c( as.character(rep( gender,3))) , c( F76,6- F83, F90) ) Looking into JJ one has: c.as.character.rep.gender..8... c.6...F73..F78..F79..F82..6...F84..F94..F106..F109 1 w 2 2 w
2006 Jun 04
1
Nested and repeated effects together?
Dear R people, I am having a problem with modeling the following SAS code in R: Class ID Gr Hemi Region Gender Model Y = Gr Region Hemi Gender Gr*Hemi Gr*Region Hemi*Region Gender*Region Gender*Hemi Gr*Hemi*Region Gender*Hemi*Region Gr*Gender*Hemi*Region Random Intercept Region Hemi /Subject = ID (Gr Gender) I.e., ID is a random effect nested in Gr and Gender, leading to ID-specific
2010 Jan 21
1
Simple effects with Design / rms ols() function
Hi everyone, I'm having some difficulty getting "simple effects" for the ols() function in the rms package. The example below illustrates my difficulty -- I'll be grateful for any help. #make up some data exD <- structure(list(Gender = structure(c(1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L), .Label = c("F", "M"), class = "factor"),
2007 Mar 08
1
how to assign fixed factor in lm
Hi there, > Value=c(709,679,699,657,594,677,592,538,476,508,505,539) > Lard=rep(c("Fresh","Rancid"),each=6) > Gender=rep(c("Male","Male","Male","Female","Female","Female"),2) > Food=data.frame(Value,Lard,Gender) > Food Value Lard Gender 1 709 Fresh Male 2 679 Fresh Male 3 699 Fresh
2007 Apr 02
1
?Bug: '&&' and '&' give different results?
"&&" seems to behave strangely and gives different results from "&" e.g. in a data frame selection (regardless whether terms are bracketed)? ===========Script======================= test=data.frame(gender=c("F","M","M","F","F"),side=c("R","L","R","L","R")) test
2007 Jun 21
1
Result depends on order of factors in unbalanced designs (lme, anova)?
Dear R-Community! For example I have a study with 4 treatment groups (10 subjects per group) and 4 visits. Additionally, the gender is taken into account. I think - and hope this is a goog idea (!) - this data can be analysed using lme as below. In a balanced design everything is fine, but in an unbalanced design there are differences depending on fitting y~visit*treat*gender or
2010 Mar 06
2
Plot interaction in multilevel model
I am trying to plot an interaction in a multilevel model. Here is some sample data. In the following example, it is longitudinal (i.e., repeated measures), so the outcome, score (at each of the three time points), is nested within the individual. I am interested in the interaction between gender and happiness predicting score. id <- c(1,1,1,2,2,2,3,3,3) age <-
2009 Sep 08
2
Very basic question regarding plot.Design...
Hello ALL! I have a problem to plot factor (lets say gender) as a line, or at least both line and point, from ols model: ols1 <- ols(Y ~ gender, data=dat, x=T, y=T) plot(ols1, gender=NA, xlab="gender", ylab="Y", ylim=c(5,30), conf.int=FALSE) If I convert gender into discrete numeric predictor, and use forceLines=TRUE, plot is not nice and true, since it shows values
2008 May 25
1
marginality principle / selecting the right type of SS for an interaction hypothesis
Hello, I have a problem with selecting the right type of sums of squares for an ANCOVA for my specific experimental data and hypotheses. I do have a basic understanding of the differences between Type-I, II, and III SSs, have read about the principle of marginality, and read Venable's "Exegeses on Linear Models" (http://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf). I am pretty new to
2013 Jan 31
2
Help with multiple barplots
Hello: I need to create a six barplots from data that looks pretty close to what appears below. There are two grouping variables (age and gender) and three dependent variables for each grouping variables. I'm not really familiar with trellis graphics, perhaps there is something that can do what I need there, i don't know. The thing is: I *need* these to appear on one row, with some way
2011 Nov 22
1
Rcmdr numSummary: means of multiple variables without grouping
Hello there, when using the function numSummary in Rcmdr and selecting more than one variable (without grouping), the grand mean across all variables is returned for each variable instead of the mean of each single variable. However, this happens only for the mean, and not for sd, quantiles and na. This is the output: > numSummary(dataset1 [,c("var1", "var2")],