similar to: problems with nls function

Displaying 20 results from an estimated 10000 matches similar to: "problems with nls function"

2005 Jul 17
3
Is it possible to coerce R to continue proceeding the next command in a loop after an error message ?
Hello R-users, In a loop, if a function, such as "nls", gives an error, is it possible to coerce R to continue proceeding the next command with the same loop? Thanks so much for your advice! Hanna Lu [[alternative HTML version deleted]]
2005 Jul 17
1
how to solve the step halving factor problems in gnls and nls
Hi R-users, Could you give me some advice in solving the problem of such error message from gnls and nls? ## begin error message "Problem in gnls(y1 ~ glogit4(b, c, m, t, x), data.frame(x..: Step halving factor reduced below minimum in NLS step " ##and "Problem in nls(y ~ 1/(1 + exp((xmid - x)/scal)), data = x..: step factor reduced below minimum "? Thank you in
2007 Sep 05
3
'singular gradient matrix’ when using nls() and how to make the program skip nls( ) and run on
Dear friends. I use nls() and encounter the following puzzling problem: I have a function f(a,b,c,x), I have a data vector of x and a vectory y of realized value of f. Case1 I tried to estimate c with (a=0.3, b=0.5) fixed: nls(y~f(a,b,c,x), control=list(maxiter = 100000, minFactor=0.5 ^2048),start=list(c=0.5)). The error message is: "number of iterations exceeded maximum of
2013 Mar 14
2
question about nls
Hi,all: I met a problem of nls. My data: x y 60 0.8 80 6.5 100 20.5 120 45.9 I want to fit exp curve of data. My code: > nls(y ~ exp(a + b*x)+d,start=list(a=0,b=0,d=1)) Error in nlsModel(formula, mf, start, wts) : singular gradient matrix at initial parameter estimates I can't find out the reason for the error. Any suggesions are welcome. Many thanks. [[alternative HTML
2008 May 23
3
nls diagnostics?
Hi, All: What tools exist for diagnosing singular gradient problems with 'nls'? Consider the following toy example: DF1 <- data.frame(y=1:9, one=rep(1,9)) nlsToyProblem <- nls(y~(a+2*b)*one, DF1, start=list(a=1, b=1), control=nls.control(warnOnly=TRUE)) Error in nlsModel(formula, mf, start, wts) : singular gradient matrix at initial
2012 Jul 11
2
nls problem: singular gradient
Why fails nls with "singular gradient" here? I post a minimal example on the bottom and would be very happy if someone could help me. Kind regards, ########### # define some constants smallc <- 0.0001 t <- seq(0,1,0.001) t0 <- 0.5 tau1 <- 0.02 # generate yy(t) yy <- 1/2 * ( 1- tanh((t - t0)/smallc) * exp(-t / tau1) ) + rnorm(length(t))*0.01 # show the curve
2006 Sep 29
1
linear gradient in nls
Hello, I hope this doesn't turn into a statistics question but here I go. I am using the nls function with a Gaussian distribution, see coding below. When I run the nls I get an error back saying that I have a linear gradient. I then, of course am unable to do anything else. The data that I am using are intensity values from some mass spectrometry data. Is there something I can
2006 Sep 28
1
Nonlinear fitting - reparametrization help
Hi, I am trying to fit a function of the form: y = A0 + A1 * exp( -0.5* ( (X - Mu1) / Sigma1 )^2 ) - A2 * exp ( -0.5* ( (X-Mu2)/Sigma2 )^2 ) i.e. a mean term (A0) + a difference between two gaussians. The constraints are A1,A2 >0, Sigma1,Sigma2>0, and usually Sigma2>Sigma1. The plot looks like a "Mexican Hat". I had trouble (poor fits) fitting this function to toy data
2008 Mar 28
1
Singular Gradient in nls
//Referring to the response posted many years ago, copied below, what is the specific criterium used for singularity of the gradient matrix? Is a Singular Value Decomposition used to determine the singular values? Is it the gradient matrix condition number or some other criterion for determining singularity? // //Glenn // / / /> What does the error 'singular gradient' mean
2009 Dec 18
2
NLS-Weibull-ERROR
Hello I was trying to estimate the weibull model using nls after putting OLS values as the initial inputs to NLS. I tried multiple times but still i m getting the same error of Error in nlsModel(formula, mf, start, wts) : singular gradient matrix at initial parameter estimates. The Program is as below > vel <- c(1,2,3,4,5,6,7,8,9,10,11,12,13,14) > df <- data.frame(conc, vel) >
2004 Oct 07
1
confidence interval for nls
Do I have the right impression that it's currently not possible to produce confidence intervals for the nls predictions using R? I had a course were we used SAS PROC nlin and there you could get intervals for the parameters and the prediction but I do not have access to SAS. Would it be difficult to implement, I tried to dig into the help pages of nls, vcov and nlsModel but I could not
2012 Jun 04
2
Non-linear curve fitting (nls): starting point and quality of fit
Hi all, Like a lot of people I noticed that I get different results when I use nls in R compared to the exponential fit in excel. A bit annoying because often the R^2 is higher in excel but when I'm reading the different topics on this forum I kind of understand that using R is better than excel? (I don't really understand how the difference occurs, but I understand that there is a
2005 Apr 23
1
start values for nls() that don't yield singular gradients?
I'm trying to fit a Gompertz sigmoid as follows: x <- c(15, 16, 17, 18, 19) # arbitrary example data here; y <- c(0.1, 1.8, 2.2, 2.6, 2.9) # actual data is similar gm <- nls(y ~ a+b*exp(-exp(-c*(x-d))), start=c(a=?, b=?, c=?, d=?)) I have been unable to properly set the starting value '?'s. All of my guesses yield either a "singular gradient" error if they
2009 Sep 08
1
Confident interval for nls predictions
Hello all, I'm trying to establish some confidence intervals on predictions I am making using >predict(nls(...)) and predict.nls (unfortunately) does not utilize the se.fit option. A little more background is that I am trying to match the output with older SAS routines to maintain consistency. Because predict.nls does not provide se's for individual predictions, I have been using a
2010 Dec 13
2
Complicated nls formula giving singular gradient message
I'm attempting to calculate a regression in R that I normally use Prism for, because the formula isn't pretty by any means. Prism presents the formula (which is in the Prism equation library as Heterologous competition with depletion, if anyone is curious) in these segments: KdCPM = KdnM*SpAct*Vol*1000 R=NS+1 S=(1+10^(X-LogKi))*KdCPM+Hot a=-1*R b=R*S+NS*Hot+BMax c = -1*Hot*(S*MS+BMax) Y
2010 Apr 28
1
NLS "Singular Gradient" Error
Hello, I am trying to model a type II functional response of number of prey eaten (Ne) against number supplied (No) with a non-linear least squares regression (nls). I am using a modification of Holling's (1959) disc equation to account for non-replacement of prey; Ne=No{1-exp[a(bNe-T)]} where a is the attack rate, b is the handling time, and T is the experimental period. My script is as
2002 Apr 02
1
Extract psuedo model matrix from nls?
Hi R-list, I'd like to extract the psuedo model matrix (derivative of fitted values wrt the parameters) from an nls object. Any suggestions? Thanks, Murray Jorgensen Dr Murray Jorgensen on leave from: Mathematics and Statistics Department of Statistics University of Victoria University of Waikato PO BOX 3045 STN CSC Hamilton, New Zealand
2004 Apr 21
2
Question on CAR appendix on NLS
The PDF file on the web, which is an appendix on nonlinear regression associated with the CAR book, is very nice. When I ran through the code presented there, I found something odd. The code does a certain model in 3 ways: Vanilla NLS (using numerical differentation), Analytical derivatives (where the user supplies the derivatives) and analytical derivatives (using automatic differentiation). The
2013 Jun 19
1
nls singular gradient ..as always..
Hi all. Sorry for posting again such a topic but I went through previous posts but couldn't find a solution. I use the following code to fit an exponential model to my data. I have 4 different datasets. For 3 datasets nls seems to work fine and I have no error messages. But for 1 dataset I am getting the "world known" singular gradient error. xfit.dNEE <-
2011 Jun 30
1
Error "singular gradient matrix at initial parameter estimates" in nls
Greetings, I am struggling a bit with a non-linear regression. The problem is described below with the known values r and D inidcated. I tried to alter the start values but get always following error message: Error in nlsModel(formula, mf, start, wts): singular gradient matrix at initial parameter estimates Calls: nls -> switch -> nlsModel I might be missing something with regard to the