similar to: Nested Logistic Regression

Displaying 20 results from an estimated 10000 matches similar to: "Nested Logistic Regression"

2006 Dec 16
2
how to adjust link function in logistic regression to predict the proportion of correct responses in 2AFC task?
I have would like to use logistic regression to analyze the percentage of correct responses in a 2 alternative forced choice task. The question is whether one needs to take into account the fact expected probabilities for the percentage of correct responses ranges between 0.5 and 1 in this case and how to adjust the link function accordingly in R (see details below). Gabriel Subjects were asked
2006 Oct 06
2
Fitting a cumulative gaussian
Dear R-Experts, I was wondering how to fit a cumulative gaussian to a set of empirical data using R. On the R website as well as in the mail archives, I found a lot of help on how to fit a normal density function to empirical data, but unfortunately no advice on how to obtain reasonable estimates of m and sd for a gaussian ogive function. Specifically, I have data from a psychometric function
2007 May 08
3
ordered logistic regression with random effects. Howto?
I'd like to estimate an ordinal logistic regression with a random effect for a grouping variable. I do not find a pre-packaged algorithm for this. I've found methods glmmML (package: glmmML) and lmer (package: lme4) both work fine with dichotomous dependent variables. I'd like a model similar to polr (package: MASS) or lrm (package: Design) that allows random effects. I was
2013 Jul 11
1
Differences between glmmPQL and lmer and AIC calculation
Dear R Community, I?m relatively new in the field of R and I hope someone of you can help me to solve my nerv-racking problem. For my Master thesis I collected some behavioral data of fish using acoustic telemetry. The aim of the study is to compare two different groups of fish (coded as 0 and 1 which should be the dependent variable) based on their swimming activity, habitat choice, etc.
2010 Jan 23
1
(nlme, lme, glmmML, or glmmPQL)mixed effect models with large spatial data sets
Hi, I have a spatial data set with many observations (~50,000) and would like to keep as much data as possible. There is spatial dependence, so I am attempting a mixed model in R with a spherical variogram defining the correlation as a function of distance between points. I have tried nlme, lme, glmmML, and glmmPQL. In all case the matrix needed (seems to be (N^2)/2 - N) is too large for my
2006 Mar 08
1
Want to fit random intercept in logistic regression (testing lmer and glmmML)
Greetings. Here is sample code, with some comments. It shows how I can simulate data and estimate glm with binomial family when there is no individual level random error, but when I add random error into the linear predictor, I have a difficult time getting reasonable estimates of the model parameters or the variance component. There are no clusters here, just individual level responses, so
2004 Apr 27
3
se.fit in predict.glm
Hi Folks, I'm seeking confirmation of something which is probably true but which I have not managed to find in the documentation. I have a binary response y={0.1} and a variable x and have fitted a probit response to the data with f <- glm( y~x, family=binomial(link=probit) ) and then, with a specified set of x-value X I have used the predict.glm function as p <- predict( f, X,
2006 Jun 14
1
lmer and mixed effects logistic regression
I'm using FC4 and R 2.3.1 to fit a mixed effects logistic regression. The response is 0/1 and both the response and the age are the same for each pair of observations for each subject (some observations are not paired). For example: id response age 1 0 30 1 0 30 2 1 55 2 1 55 3 0 37 4 1 52 5 0 39 5 0 39 etc. I get the
2006 Jan 02
2
mixed effects models - negative binomial family?
Hello all, I would like to fit a mixed effects model, but my response is of the negative binomial (or overdispersed poisson) family. The only (?) package that looks like it can do this is glmm.ADMB (but it cannot run on Mac OS X - please correct me if I am wrong!) [1] I think that glmmML {glmmML}, lmer {Matrix}, and glmmPQL {MASS} do not provide this "family" (i.e. nbinom, or
2006 Nov 20
4
for help about logistic regression model
I have a dataset like this: p aa index x y z sdx sdy sdz delta as ms cur sc 1 821p MET 1 -5.09688 32.8830 -5.857620 1.478200 1.73998 0.825778 13.7883 126.91 92.37 -0.1320180 111.0990 2 821p THR 2 -4.07357 28.6881 -4.838430 0.597674 1.37860 1.165780 13.7207 64.09 50.72 -0.0977129 98.5319 3 821p GLU 3 -5.86733 30.4759
2004 Nov 01
1
GLMM
Hello, I have a problem concerning estimation of GLMM. I used methods from 3 different packages (see program). I would expect similar results for glmm and glmmML. The result differ in the estimated standard errors, however. I compared the results to MASS, 4th ed., p. 297. The results from glmmML resemble the given result for 'Numerical integration', but glmm output differs. For the
2012 Nov 26
1
Help on function please
Dear All,   I could use a bit of help here, this function is hard to figure out (for me at least) I have the following so far:   PKindex<-data.frame(Subject=c(1),time=c(1,2,3,4,6,10,12),conc=c(32,28,25,22,18,14,11)) Dose<-200 Tinf <-0.5   defun<- function(time, y, parms) {  dCpdt <- -parms["kel"] * y[1]  list(dCpdt)  } modfun <- function(time,kel, Vd) {   out <-
2006 Sep 04
1
Problem with Variance Components (and general glmm confusion)
Dear list, I am having some problems with extracting Variance Components from a random-effects model: I am running a simple random-effects model using lme: model<-lme(y~1,random=~1|groupA/groupB) which returns the output for the StdDev of the Random effects, and model AIC etc as expected. Until yesterday I was using R v. 2.0, and had no problem in calling the variance components of the
2009 Feb 08
5
glmmBUGS: logistic regression on proportional data
Hello, I am trying to run a logistic regression with random effects on proportional data in glmmBUGS. I am a newcomer to this package, and wondered if anyone could help me specify the model correctly. I am trying to specify the response variable, /yseed/, as # of successes out of total observations... but I suspect that given the error below, that is not correct. Also, Newsect should be a
2004 Aug 18
1
logistic -normal model
I am working with a logistic-normal model (i.e, GLMM with random intercept model) by Bayesian method. BUt I met some difficulities for programming by R. Is there anyone have experience of this model or the R code I can refer as example? Thanks for your help. Syl
2005 Aug 03
1
Multilevel logistic regression using lmer vs glmmPQL vs.gllamm in Stata
>On Wed, 3 Aug 2005, Bernd Weiss wrote: > >> I am trying to replicate some multilevel models with binary outcomes >> using R's "lmer" and "glmmPQL" and Stata's gllmm, respectively. > >That's not going to happen as they are not using the same criteria. the glmmPQL and lmer both use the PQL method to do it ,so can we get the same result by
2003 May 11
1
NLME - multilevel model using binary outcome - logistic regression
Hi! I'm pretty raw when working with the R models (linear or not). I'm wondering has anybody worked with the NLME library and dichotomous outcomes. I have a binary outcome variable that I woul like to model in a nested (multilevel) model. I started to fit a logistic model to a NLS function, but could not suceed. I know there are better ways to do it in R with either the LRM or GLM wih
2005 Dec 05
1
how to save output all together
Dear R users: I have a problem about catch the value from function. I have following two functions (part): sbolus1 <- function() { ....... for( i in 1:Subject) { kel<-par1 Vd<-par2 PKindex<-sbolus1.out(PKtime,kel,Vd,defun,par1,par2,Dose,i) } savefile(PKindex) } sbolus1.out<-function(PKtime,kel,Vd,defun,par1,par2,Dose,i) { time<-PKtime$time
2005 Aug 03
2
Multilevel logistic regression using lmer vs glmmPQL vs. gllamm in Stata
Dear all, I am trying to replicate some multilevel models with binary outcomes using R's "lmer" and "glmmPQL" and Stata's gllmm, respectively. The data can be found at <http://www.uni-koeln.de/~ahf34/xerop.dta>. The relevant Stata output can be found at <http://www.uni- koeln.de/~ahf34/stataoutput.txt>. First, you will find the unconditional model,
2009 Jul 16
5
Entire Organization Switching from SAS to R - Any experience?
My institute has been heavily dependent on SAS for the past while, and SAS is starting to charge us a very deep amount for license renewal. Since we are a non-profit organization that is definitely not sustainable. The team is brainstorming possibility of switching to R, at least gradually. I am talking about the entire institute with considerable number of analysts using SAS their entire