similar to: comparing glmmPQL models

Displaying 20 results from an estimated 30000 matches similar to: "comparing glmmPQL models"

2005 Oct 19
1
anova with models from glmmPQL
Hi ! I try to compare some models obtained from glmmPQL. model1 <- glmmPQL(y~red*yellow+I(red^2)+I(yellow^2)+densite8+I(densite8^2)+freq8_4 +I(freq8_4^2), random=~1|num, binomial); model2 <- glmmPQL(y~red*yellow+I(red^2)+I(yellow^2)+densite8+I(densite8^2)+freq8_4 , random=~1|num, binomial); anova(model1, model2) here is the answer : Erreur dans anova.lme(model1, model2) : Objects must
2007 Feb 20
1
Simplification of Generalised Linear mixed effects models using glmmPQL
Dear R users I have built several glmm models using glmmPQL in the following structure: m1<-glmmPQL(dev~env*har*treat+dens, random = ~1|pop/rep, family = Gamma) (full script below, data attached) I have tried all the methods I can find to obtain some sort of model fit score or to compare between models using following the deletion of terms (i.e. AIC, logLik, anova.lme(m1,m2)), but I
2004 Aug 19
2
glmmPQL in R and S-PLUS 6 - differing results
Greetings R-ers, A colleague and I have been exploring the behaviour of glmmPQL in R and S-PLUS 6 and we appear to get different results using the same code and the same data set, which worries us. I have checked the behaviour in R 1.7.1 (MacOS 9.2) and R. 1.9.0 (Windows 2000) and the results are the same, but differ from S-PLUS 6 with the latest Mass and nlme libraries (Windows XP). Here
2004 Nov 26
1
help with glmmPQL
Hello: Will someone PLEASE help me with this problem. This is the third time I've posted it. When I appply anova() to two equations estimated using glmmPQL, I get a complaint, > anova(fm1, fm2) Error in anova.lme(fm1, fm2) : Objects must inherit from classes "gls", "gnls" "lm","lmList", "lme","nlme","nlsList", or
2011 Jan 17
1
Using anova() with glmmPQL()
Dear R HELP, ABOUT glmmPQL and the anova command. Here is an example of a repeated-measures ANOVA focussing on the way starling masses vary according to (i) roost situation and (ii) time (two time points only). library(nlme);library(MASS)
2004 Nov 24
0
problem with anova and glmmPQL
Hello: I am getting an error message when appplying anova() to two equations estimated using glmmPQL. I did look through the archives but didn't finding anything relevant to my problem. The R-code and results follow. Hope someone can help. ANDREW ____________________________ > fm1 <- glmmPQL(choice ~ day + stereotypy, + random = ~ 1 | bear, data = learning, family =
2004 Nov 25
0
MASS problem -- glmmPQL and anova
Hello: I am really stuck on this problem. Why do I get an error message with anova() when I compare these two equations? Hope someone can help. ANDREW ____________________________ > fm1 <- glmmPQL(choice ~ day + stereotypy, + random = ~ 1 | bear, data = learning, family = binomial) > fm2 <- glmmPQL(choice ~ day + envir + stereotypy, + random = ~ 1 |
2003 Jan 14
1
glmmPQL and anova
Dear R-users, I have conducted an experiment with a 2*2*2 factorial within-subjects design. All factors are binary and the dependent measure is a frequency of successes between 0 and 4. Treating this as a normally distributed variable, I would perform a repeated-measures ANOVA as follows: > aov(y ~ A*B*C + Error(subj/(A+B+C))) but since the distribution of the dependent measure is clearly
2003 May 20
0
Problem on model simplification with glmmPQL
Hi all, I try to make a split-plot with poisson errors using glmmPQL, but I have some doubts about the model simplification. Look my system: Block = 3 blocks Xvar1 = 2 levels Xvar2 = 13 levels Yvar = Count data Response I need know about the behaviour of Var1, Var2 and interaction Var1:Var2. Look the levels: > levels(Xvar1) [1] "A" "B" > levels(Xvar2) [1]
2004 Sep 15
0
FW: glmmPQL and random factors
I have just realised that I sent this to Per only. For those interested on the list: -----Original Message----- From: Gygax Lorenz FAT Sent: Tuesday, September 14, 2004 4:35 PM To: 'Per Tor??ng' Subject: RE: [R] glmmPQL and random factors Hi Per, > glmmPQL(Fruit.set~Treat1*Treat2+offset(log10(No.flowers)), > random=~1|Plot, family=poisson, data=...) > > Plot is supposed
2003 Jul 14
1
methods help and glmmPQL
Dear All, I would like to ask you to help me with my memeory. I remember using some function that would list all the possible methods I could apply to an object. Say, if I had an object of class=lme, it would tell me that that I could do stuff like qqnorm(myobjct), or VarCorr(myobject). In general, a very complete list. I though this list of all possible methods would pop out by typing
2009 Jul 16
0
how to get means and confidence limits after glmmPQL or lmer
R, I want to get means and confidence limits on the original scale for the treatment effect after running a mixed model. The data are: response<-c(16,4,5,8,41,45,10,15,11,3,1,64,41,23,18,16,10,22,2,3)
2004 Feb 10
0
GLMMpql: reporting on main effects
Dear R users I am using GLMMpql to analyse some nested negative binomial response data. How do I summarise the significance of my main effects? For example, in a standard linear mixed model (lme), I would use anova.lme to obtain an F statistic and P value for each of my main effects: how do I achieve a similar goal using GLMMpql? many thanks Sarah Richardson Sarah Richardson Plant
2005 Jan 24
4
lme and varFunc()
Dear R users, I am currently analyzing a dataset using lme(). The model I use has the following structure: model<-lme(response~Covariate+TreatmentA+TreatmentB,random=~1|Block/Plot,method="ML") When I plot the residuals against the fitted values, I see a clear positive trend (meaning that the variance increases with the mean). I tried to solve this issue using weights=varPower(),
2010 Jan 23
1
(nlme, lme, glmmML, or glmmPQL)mixed effect models with large spatial data sets
Hi, I have a spatial data set with many observations (~50,000) and would like to keep as much data as possible. There is spatial dependence, so I am attempting a mixed model in R with a spherical variogram defining the correlation as a function of distance between points. I have tried nlme, lme, glmmML, and glmmPQL. In all case the matrix needed (seems to be (N^2)/2 - N) is too large for my
2008 Oct 03
0
glmmPQL & Wald-type F-tests
Hello, Might anyone know how to conduct Wald-type F-tests of the fixed effects estimated by glmmPQL? I see this implemented in SAS (GLIMMIX), and have seen it recommended in user group discussions, but haven't come across any code to accomplish it. I understand the anova function treats a glmmPQL fit as an lme fit, with the test assumptions based on maximum likelihood, which is inappropriate
2004 Mar 22
0
solved mystery of difference between glmmPQL and lme
I asked a few days ago about the difference in results I saw between the MASS function glmmPQL (due to Venables and Ripley) and the lme function from the package nlme (due to Pinheiro and Bates). When the two tools apply to the same model (gaussian, link=identity, correlation=AR1), I was getting different results and wondered if there was an argument in favor of one or the other. Several
2004 Nov 25
1
Error in anova(): objects must inherit from classes
Hello: Let me rephrase my question to attract interest in the problem I'm having. When I appply anova() to two equations estimated using glmmPQL, I get a complaint, > anova(fm1, fm2) Error in anova.lme(fm1, fm2) : Objects must inherit from classes "gls", "gnls" "lm","lmList", "lme","nlme","nlsList", or "nls"
2006 Oct 29
1
glmmPQL in 2.3.1
I have come across the previous communication on this list in September (copied below) because I had received the same error message. I understand from Brian Ripley's reply that anova should not be used with glmmPQL because it is not an adequate method, and that this is now shown with an error message. My question is, what method *should* be used? Using summary does not give me the result
2004 Mar 20
1
contrast lme and glmmPQL and getting additional results...
I have a longitudinal data analysis project. There are 10 observations on each of 15 units, and I'm estimating this with randomly varying intercepts along with an AR1 correction for the error terms within units. There is no correlation across units. Blundering around in R for a long time, I found that for linear/gaussian models, I can use either the MASS method glmmPQL (thanks to