similar to: Code for quasi-likelihood binomial estimation

Displaying 20 results from an estimated 10000 matches similar to: "Code for quasi-likelihood binomial estimation"

2005 Nov 28
3
glm: quasi models with logit link function and binary data
# Hello R Users, # # I would like to fit a glm model with quasi family and # logistical link function, but this does not seam to work # with binary data. # # Please don't suggest to use the quasibinomial family. This # works out, but when applied to the true data, the # variance function does not seams to be # appropriate. # # I couldn't see in the # theory why this does not work. # Is
2006 Apr 23
1
Comparing GLMMs and GLMs with quasi-binomial errors?
Dear All, I am analysing a dataset on levels of herbivory in seedlings in an experimental setup in a rainforest. I have seven classes/categories of seedling damage/herbivory that I want to analyse, modelling each separately. There are twenty maternal trees, with eight groups of seedlings around each. Each tree has a TreeID, which I use as the random effect (blocking factor). There are two
2008 Aug 20
5
GAM-binomial logit link
Dear all, I'm using a binomial distribution with a logit link function to fit a GAM model. I have 2 questions about it. First i am not sure if i've chosen the most adequate distribution. I don't have presence/absence data (0/1) but I do have a rate which values vary between 0 and 1. This means the response variable is continuous even if within a limited interval. Should i use
2008 Sep 16
1
Using quasibinomial family in lmer
Dear R-Users, I can't understand the behaviour of quasibinomial in lmer. It doesn't appear to be calculating a scaling parameter, and looks to be reducing the standard errors of fixed effects estimates when overdispersion is present (and when it is not present also)! A simple demo of what I'm seeing is given below. Comments appreciated? Thanks, Russell Millar Dept of Stat U.
2009 Nov 20
1
different results across versions for glmer/lmer with the quasi-poisson or quasi-binomial families: the lattest version might not be accurate...
Dear R-helpers, this mail is intended to mention a rather trange result and generate potential useful comments on it. I am not aware of another posts on this issue ( RSiteSearch("quasipoisson lmer version dispersion")). MUsing the exemple in the reference of the lmer function (in lme4 library) and turning it into a quasi-poisson or quasi-binomial analysis, we get different results,
2006 Jan 14
2
initialize expression in 'quasi' (PR#8486)
This is not so much a bug as an infelicity in the code that can easily be fixed. The initialize expression in the quasi family function is, (uniformly for all links and all variance functions): initialize <- expression({ n <- rep.int(1, nobs) mustart <- y + 0.1 * (y == 0) }) This is inappropriate (and often fails) for variance function "mu(1-mu)".
2003 Jul 04
1
Quasi AIC
Dear all, Using the quasibinomial and quasipoisson families results in no AIC being calculated. However, a quasi AIC has actually been defined by Lebreton et al (1992). In the (in my opinon, at least) very interesting book by Burnham and Anderson (1998,2002) this QAIC (and also QAICc) is covered. Maybe this is something that could be implemented in R. Take a look at page 23 in this pdf:
2010 Feb 05
0
Quasi-binomial GLM and model selection
Hi, I'm using a GLM with a quasi binomial error distribution and I would like to do a model selection method similar to step(AIC) to carry out a restricted search for the "best" model. I would like to know which of my 5 predictor variables would be included in the "best" model if I start with a 'full' model (fullbinom in this case). However, AIC can't be
2009 Feb 16
1
Overdispersion with binomial distribution
I am attempting to run a glm with a binomial model to analyze proportion data. I have been following Crawley's book closely and am wondering if there is an accepted standard for how much is too much overdispersion? (e.g. change in AIC has an accepted standard of 2). In the example, he fits several models, binomial and quasibinomial and then accepts the quasibinomial. The output for residual
2000 Apr 19
1
scale factors/overdispersion in GLM: possible bug?
I've been poking around with GLMs (on which I am *not* an expert) on behalf of a student, particularly binomial (standard logit link) nested models with overdispersion. I have one possible bug to report (but I'm not confident enough to be *sure* it's a bug); one comment on the general inconsistency that seems to afflict the various functions for dealing with overdispersion in GLMs
2002 Jul 01
1
Defining own variance function / quasi-likelihood in a GLM
Hello, I've been looking in the on-line manuals and searching past posts but can't find an answer to this question. I'd like to define my own variance function in a GLM. The function glm(formula, family=quasi(var="var function")) lets me choose from a selection of built in variances, but I want to define my own function for the variance. Is there an S-plus
2009 Feb 28
0
Implementation of quasi-bayesian maximum likelihood estimation for normal mixtures
Hi, as you can see in the topic, I am trying to fit a normal mixture distribution with the approach suggested by Hamilton (1991). Since I couldn't find any existing packages including the quasi-bayesian mle, I have to write my own function. Unfortunately, I have absolutely no experience in doing this. If you're not familiar with the QB-MLE, I attached the formula as pdf. The idea
2011 Oct 13
1
binomial GLM quasi separation
Hi all, I have run a (glm) analysis where the dependent variable is the gender (family=binomial) and the predictors are percentages. I get a warning saying "fitted probabilities numerically 0 or 1 occurred" that is indicating that quasi-separation or separation is occurring. This makes sense given that one of these predictors have a very influential effect that is depending on a
2011 Oct 03
1
Quasi-Binomial simulation
Hi I want to do simulation on quasi-binomial distribution with some covariates. Does anyone have an idea how to do that? [[alternative HTML version deleted]]
2003 Jul 03
1
How to use quasibinomial?
Dear all, I've got some questions, probably due to misunderstandings on my behalf, related to fitting overdispersed binomial data using glm(). 1. I can't seem to get the correct p-values from anova.glm() for the F-tests when supplying the dispersion argument and having fitted the model using family=quasibinomial. Actually the p-values for the F-tests seems identical to the p-values for
2001 Jul 31
1
using identity link for binomial familly with glm
-- Error in binomial(link = "identity") : identity link not available for binomial family, available links are "logit", "probbit", "cloglog" and "log" Hi, I have a question, dealing with this error response. I'm trying to make anova on percentages. The variablethat has a biological significance is actually the percentage itself. Is it
2015 Apr 16
4
Weighted Likelihood
¡Muchas gracias Olivier! Un saludo. El 16 de abril de 2015, 10:44, Olivier Nuñez <onunez en unex.es> escribió: > Mira el paquete survey. > Un saludo. Olivier > > ----- Mensaje original ----- > De: "Víctor Nalda Castellet" <victor.nalda.castellet en gmail.com> > Para: "r-help-es" <r-help-es en r-project.org> > Enviados: Miércoles, 15 de
2000 May 09
4
Dispersion in summary.glm() with binomial & poisson link
Following p.206 of "Statistical Models in S", I wish to change the code for summary.glm() so that it estimates the dispersion for binomial & poisson models when the parameter dispersion is set to zero. The following changes [insertion of ||dispersion==0 at one point; and !is.null(dispersion) at another] will do the trick: "summary.glm" <- function(object, dispersion =
2005 Sep 22
3
anova on binomial LMER objects
Dear R users, I have been having problems getting believable estimates from anova on a model fit from lmer. I get the impression that F is being greatly underestimated, as can be seen by running the example I have given below. First an explanation of what I'm trying to do. I am trying to fit a glmm with binomial errors to some data. The experiment involves 10 shadehouses, divided between
2006 Jun 13
1
Slight fault in error messages
Just a quick point which may be easy to correct. Whilst typing the wrong thing into R 2.2.1, I noticed the following error messages, which seem to have some stray quotation marks and commas in the list of available families. Perhaps they have been corrected in the latest version (sorry, I don't want to upgrade yet, but it should be easy to check)? > glm(1 ~ 2,