Displaying 20 results from an estimated 6000 matches similar to: "covariance = diagonal + F'F"
2004 Oct 19
3
matrix of eigenvalues
I thought that the function
eigen(A)
will return a matrix with eigenvectors that are independent of each
other (thus forming a base and the matrix being invertible). This
seems not to be the case in the following example
A=matrix(c(1,2,0,1),nrow=2,byrow=T)
eigen(A) ->ev
solve(ev$vectors)
note that I try to get the upper triangular form with eigenvalues on
the diagonal and (possibly) 1 just
2008 Jun 18
2
highest eigenvalues of a matrix
DeaR list,
I happily use eigen() to compute the eigenvalues and eigenvectors of
a fairly large matrix (200x200, say), but it seems over-killed as its
rank is limited to typically 2 or 3. I sort of remember being taught
that numerical techniques can find iteratively decreasing eigenvalues
and corresponding orthogonal eigenvectors, which would provide a nice
alternative (once I have the
2010 May 21
2
Data reconstruction following PCA using Eigen function
Hi all,
As a molecular biologist by training, I'm fairly new to R (and statistics!),
and was hoping for some advice. First of all, I'd like to apologise if my
question is more methodological rather than relating to a specific R
function. I've done my best to search both in the forum and elsewhere but
can't seem to find an answer which works in practice.
I am carrying out
2008 Jun 03
3
matlab eigs function in R
Hello
Does anybody know how one can compute d largest eigenvalues/eigenvectors in
R, like in MATLAB eigs function ? eigen function computes all
eigenvectors/eigenvalues, and they are slightly different than those
generated by matlab eigs.
Thanks in advance
--
View this message in context: http://www.nabble.com/matlab-eigs-function-in-R-tp17619641p17619641.html
Sent from the R help mailing list
2012 Apr 19
3
Solve an ordinary or generalized eigenvalue problem in R?
Folks:
I'm trying to port some code from python over to R, and I'm running into a
wall finding R code that can solve a generalized eigenvalue problem
following this function model:
http://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eig.html
Any ideas? I don't want to call python from within R for various reasons,
I'd prefer a "native" R solution if one
2004 Sep 11
4
Cancor
Dear R's!
I am strugling with cancor procedure in R. I cannot figure out the
meaning of xcoef and of yxcoef.
Are these:
1. standardized coefficients
2. structural coefficients
3. something else?
I have tried to simulate canonical correlation analysis by checking the
eigenstructure of the expression:
Sigma_xx %*% Sigma_xy %*% Sigma_yy %*% t(Sigma_xy).
The resulting eigenvalues were the same
2003 Apr 03
2
Matrix eigenvectors in R and MatLab
Dear R-listers
Is there anyone who knows why I get different eigenvectors when I run
MatLab and R? I run both programs in Windows Me. Can I make R to produce
the same vectors as MatLab?
#R Matrix
PA9900<-c(11/24 ,10/53 ,0/1 ,0/1 ,29/43 ,1/24 ,27/53 ,0/1 ,0/1 ,13/43
,14/24 ,178/53 ,146/244 ,17/23 ,15/43 ,2/24 ,4/53 ,0/1 ,2/23 ,2/43 ,4/24
,58/53 ,26/244 ,0/1 ,5/43)
#R-syntax
2010 Jun 18
1
12th Root of a Square (Transition) Matrix
Dear R-tisans,
I am trying to calculate the 12th root of a transition (square) matrix, but can't seem to obtain an accurate result. I realize that this post is laced with intimations of quantitative finance, but the question is both R-related and broadly mathematical. That said, I'm happy to post this to R-SIG-Finance if I've erred in posting this to the general list.
I've
2007 Jun 29
2
Spectral Decomposition
All of my resources for numerical analysis show that the spectral
decomposition is
A = CBC'
Where C are the eigenvectors and B is a diagonal matrix of eigen values.
Now, using the eigen function in R
# Original matrix
aa <- matrix(c(1,-1,-1,1), ncol=2)
ss <- eigen(aa)
# This results yields back the original matrix according to the formula
above
ss$vectors %*% diag(ss$values) %*%
2011 Nov 14
2
How to compute eigenvectors and eigenvalues?
Hello.
Consider the following matrix:
mp <- matrix(c(0,1/4,1/4,3/4,0,1/4,1/4,3/4,1/2),3,3,byrow=T)
> mp
[,1] [,2] [,3]
[1,] 0.00 0.25 0.25
[2,] 0.75 0.00 0.25
[3,] 0.25 0.75 0.50
The eigenvectors of the previous matrix are 1, 0.25 and 0.25 and it is not a diagonalizable matrix.
When you try to find the eigenvalues and eigenvectors with R, R responses:
> eigen(mp)
$values
[1]
2006 Aug 10
3
Geometrical Interpretation of Eigen value and Eigen vector
Dear all,
It is not a R related problem rather than statistical/mathematical. However
I am posting this query hoping that anyone can help me on this matter. My
problem is to get the Geometrical Interpretation of Eigen value and Eigen
vector of any square matrix. Can anyone give me a light on it?
Thanks and regards,
Arun
[[alternative HTML version deleted]]
2003 Jun 08
2
LDA: normalization of eigenvectors (see SPSS)
Hi dear R-users
I try to reproduce the steps included in a LDA. Concerning the eigenvectors there is
a difference to SPSS. In my textbook (Bortz)
it says, that the matrix with the eigenvectors
V
usually are not normalized to the length of 1, but in the way that the
following holds (SPSS does the same thing):
t(Vstar)%*%Derror%*%Vstar = I
where Vstar are the normalized eigenvectors. Derror
2005 May 02
14
eigenvalues of a circulant matrix
Hi,
It is my understanding that the eigenvectors of a circulant matrix are given as
follows:
1,omega,omega^2,....,omega^{p-1}
where the matrix has dimension given by p x p and omega is one of p complex
roots of unity. (See Bellman for an excellent discussion on this).
The matrix created by the attached row and obtained using the following
commands
indicates no imaginary parts for the
2004 Jun 07
2
MCLUST Covariance Parameterization.
Hello all (especially MCLUS users).
I'm trying to make use of the MCLUST package by C. Fraley and A. Raftery. My problem is trying to figure out how the (model) identifier (e.g, EII, VII, VVI, etc.) relates to the covariance matrix. The parameterization of the covariance matrix makes use of the method of decomposition in Banfield and Rraftery (1993) and Fraley and Raftery (2002) where
2011 Dec 13
2
Inverse matrix using eigendecomposition
General goal: Write R code to find the inverse matrix of an nxn positive
definite symmetric matrix. Use solve() to verify your code works.
Started with a 3x3 matrix example to build the code, but something dosen't
seem to be working. I just don't know where I am going wrong.
##Example matrix I found online
A<-c(4,1,-1,1,2,1,-1,1,2)
m<-matrix(A,nrow=3,ncol=3)
##Caculate the eigen
2003 Feb 06
6
Confused by SVD and Eigenvector Decomposition in PCA
Hey, All
In principal component analysis (PCA), we want to know how many percentage
the first principal component explain the total variances among the data.
Assume the data matrix X is zero-meaned, and
I used the following procedures:
C = covriance(X) %% calculate the covariance matrix;
[EVector,EValues]=eig(C) %%
L = diag(EValues) %%L is a column vector with eigenvalues as the elements
percent
2013 Mar 14
2
Same eigenvalues but different eigenvectors using 'prcomp' and 'principal' commands
Dear all,
I've used the 'prcomp' command to
calculate the eigenvalues and eigenvectors of a matrix(gg).
Using the command 'principal' from the
'psych' packageĀ I've performed the same exercise. I got the same
eigenvalues but different eigenvectors. Is there any reason for that
difference?
Below are the steps I've followed:
1. PRCOMP
#defining the matrix
2010 Jun 25
2
Forcing scalar multiplication.
I am trying to check the results from an Eigen decomposition and I need to force a scalar multiplication. The fundamental equation is: Ax = lx. Where 'l' is the eigen value and x is the eigen vector corresponding to the eigenvalue. 'R' returns the eigenvalues as a vector (e <- eigen(A); e$values). So in order to 'check' the result I would multiply the eigenvalues
2004 Apr 15
5
Solving Matrices
On April 15th, Elizabeth wrote:
<snip>
> In execises 39-42, determine if the columns of the matrix span
> R4:
<snip>
>(or x <- matrix(data=c(7, -5, 6, -7, 2, -3, 10, 9, -5,
> 4, -2, 2, 8, -9, 7, 15), nrow=4, ncol=4)
>
>That is the whole of the question <snip>
Have you tried det(x) and/or eigen(x) ?
A zero determinant (within
2010 Sep 22
3
eigen and svd
Dear R-helpers,
could anybody explain me briefly what is the difference between
eigenvectors returned by 'eigen' and 'svd' functions and how they are
related?
Thanks in advance
Ondrej Mikula