similar to: eigenvectors order

Displaying 20 results from an estimated 3000 matches similar to: "eigenvectors order"

2011 Nov 14
2
How to compute eigenvectors and eigenvalues?
Hello. Consider the following matrix: mp <- matrix(c(0,1/4,1/4,3/4,0,1/4,1/4,3/4,1/2),3,3,byrow=T) > mp [,1] [,2] [,3] [1,] 0.00 0.25 0.25 [2,] 0.75 0.00 0.25 [3,] 0.25 0.75 0.50 The eigenvectors of the previous matrix are 1, 0.25 and 0.25 and it is not a diagonalizable matrix. When you try to find the eigenvalues and eigenvectors with R, R responses: > eigen(mp) $values [1]
2010 Jan 11
3
Eigenvectors and values in R and SAS
Hi, I was wondering if function eigen() does something different from the function call eigen() in SAS. I'm in the process of translating a SAS code into a R code and the values of the eigenvectors and eigenvalues of a square matrix came out to be different from the values in SAS. I would also appreciate it if someone can explain the difference in simple terms. I'm pretty new to both
2003 Apr 03
2
Matrix eigenvectors in R and MatLab
Dear R-listers Is there anyone who knows why I get different eigenvectors when I run MatLab and R? I run both programs in Windows Me. Can I make R to produce the same vectors as MatLab? #R Matrix PA9900<-c(11/24 ,10/53 ,0/1 ,0/1 ,29/43 ,1/24 ,27/53 ,0/1 ,0/1 ,13/43 ,14/24 ,178/53 ,146/244 ,17/23 ,15/43 ,2/24 ,4/53 ,0/1 ,2/23 ,2/43 ,4/24 ,58/53 ,26/244 ,0/1 ,5/43) #R-syntax
2003 Jun 08
2
LDA: normalization of eigenvectors (see SPSS)
Hi dear R-users I try to reproduce the steps included in a LDA. Concerning the eigenvectors there is a difference to SPSS. In my textbook (Bortz) it says, that the matrix with the eigenvectors V usually are not normalized to the length of 1, but in the way that the following holds (SPSS does the same thing): t(Vstar)%*%Derror%*%Vstar = I where Vstar are the normalized eigenvectors. Derror
2002 Aug 06
2
help with lagged scatterplot
Hi, How do I can make a lagged scatterplot of two variables: Yt (nao) versus Xt-h (mei) if they have the following structure: >series mei nao Jan 1950 -1.036 0.55 Feb 1950 -1.133 3.31 Mar 1950 -1.259 0.81 Apr 1950 -1.027 1.60 May 1950 -1.399 -1.73 Jun 1950 -1.366 1.26 Jul 1950 -1.300 -0.87 . . . I've tried with lag.plot but I don't understanf how to use it Thanks in
2003 Nov 04
2
real eigenvectors
Hello list, Sorry, these questions are not directly linked to R. If I consider an indefinte real matrix, I would like to know if the symmetry of the matrix is sufficient to say that their eigenvectors are real ? And what is the conditions to ensure that eigenvectors are real in the case of an asymmetric matrix (if some conditions exist)? Thanks in Advance, St?phane DRAY
2003 Jun 09
1
understanding eigen(): getting non-normalized eigenvectors
Hi, dear R pros I try to understand eigen(). I have seen, that eigen() gives the eigenvectors normalized to unit length. What shall I do to get the eigenvectors not normalized to unit length? E.g. take the example: A [,1] [,2] V1 0.7714286 -0.2571429 V2 -0.4224490 0.1408163 Calculating eigen(A) "by hand" gives the eigenvectors (example from Backhaus,
2010 Jun 25
2
Forcing scalar multiplication.
I am trying to check the results from an Eigen decomposition and I need to force a scalar multiplication. The fundamental equation is: Ax = lx. Where 'l' is the eigen value and x is the eigen vector corresponding to the eigenvalue. 'R' returns the eigenvalues as a vector (e <- eigen(A); e$values). So in order to 'check' the result I would multiply the eigenvalues
2013 Mar 14
2
Same eigenvalues but different eigenvectors using 'prcomp' and 'principal' commands
Dear all, I've used the 'prcomp' command to calculate the eigenvalues and eigenvectors of a matrix(gg). Using the command 'principal' from the 'psych' packageĀ  I've performed the same exercise. I got the same eigenvalues but different eigenvectors. Is there any reason for that difference? Below are the steps I've followed: 1. PRCOMP #defining the matrix
2006 Jan 18
1
function 'eigen' (PR#8503)
Full_Name: Pierre Legendre Version: 2.1.1 OS: Mac OSX 10.4.3 Submission from: (NULL) (132.204.120.81) I am reporting the mis-behaviour of the function 'eigen' in 'base', for the following input matrix: A <- matrix(c(2,3,4,-1,3,1,1,-2,0),3,3) eigen(A) I obtain the following results, which are incorrect for eigenvalues and eigenvectors 2 and 3 (incorrect imaginary portions):
2008 Jul 08
1
Help with eigenvectors
Hi everybody, I have some problems with the function eigen. I have a square matrix and I want to calculate the eigenvalues and eigenvectors. I apply the function eigen and I get it, however when I solve the same problem in Statistica software, I realise that some eigenvectors are the opposite. How can I get the same values? Thanks in advance [[alternative HTML version deleted]]
2012 Apr 27
2
find the eigenvector corresponding to the largest eigenvalue
Hi, If I use the eigen() function to find the eigenvalues of a matrix, how can I find the eigenvector corresponding to the largest eigen value? Thanks! [[alternative HTML version deleted]]
2011 May 28
1
prcomp & eigenvectors ... ??
Hi ... Please could you help with probably a very simple problem I have. I'm completely new to R and am trying to follow a tutorial using R for Force Distribution Analysis that I got from ... http://projects.eml.org/mbm/website/fda_gromacs.htm. Basically, the MDS I preform outputs a force matrix (.fm) from the force simulation I perform. Then, this matrix is read into R and prcomp is
2007 Jun 29
4
Dominant eigenvector displayed as third (Marco Visser)
Dear R users & Experts, This is just a curiousity, I was wondering why the dominant eigenvetor and eigenvalue of the following matrix is given as the third. I guess this could complicate automatic selection procedures. 0 0 0 0 0 5 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 Please
2008 Jun 03
3
matlab eigs function in R
Hello Does anybody know how one can compute d largest eigenvalues/eigenvectors in R, like in MATLAB eigs function ? eigen function computes all eigenvectors/eigenvalues, and they are slightly different than those generated by matlab eigs. Thanks in advance -- View this message in context: http://www.nabble.com/matlab-eigs-function-in-R-tp17619641p17619641.html Sent from the R help mailing list
2008 Jun 18
2
highest eigenvalues of a matrix
DeaR list, I happily use eigen() to compute the eigenvalues and eigenvectors of a fairly large matrix (200x200, say), but it seems over-killed as its rank is limited to typically 2 or 3. I sort of remember being taught that numerical techniques can find iteratively decreasing eigenvalues and corresponding orthogonal eigenvectors, which would provide a nice alternative (once I have the
2010 May 05
3
Symbolic eigenvalues and eigenvectors
Let's say I had a matrix like this: library(Ryacas) x<-Sym("x") m<-matrix(c(cos (x), sin(x), -sin(x), cos(x)), ncol=2) How can I use R to obtain the eigenvalues and eigenvectors? Thanks, John [[alternative HTML version deleted]]
2003 Apr 11
2
princomp with not non-negative definite correlation matrix
$ R --version R 1.6.1 (2002-11-01). So I would like to perform principal components analysis on a 16X16 correlation matrix, [princomp(cov.mat=x) where x is correlation matrix], the problem is princomp complains that it is not non-negative definite. I called eigen() on the correlation matrix and found that one of the eigenvectors is close to zero & negative (-0.001832311). Is there any way
2005 May 02
14
eigenvalues of a circulant matrix
Hi, It is my understanding that the eigenvectors of a circulant matrix are given as follows: 1,omega,omega^2,....,omega^{p-1} where the matrix has dimension given by p x p and omega is one of p complex roots of unity. (See Bellman for an excellent discussion on this). The matrix created by the attached row and obtained using the following commands indicates no imaginary parts for the
1997 May 18
2
R-alpha: Eigenvalue Computation Query
I have been looking at the "eigen" function and have reintroduced the ability to compute (right) eigenvalues and vectors for non-symmetric matrices. I've also made "eigen" complex capable. The code is based on the eispack entry points RS, RG, CH, CG (which is what S appears to use too). The problem with both the S and R implementations is that they consume huge amounts