similar to: asking for help (was RE: nnet trouble, continued)

Displaying 20 results from an estimated 6000 matches similar to: "asking for help (was RE: nnet trouble, continued)"

2002 Aug 09
0
nnet trouble, continued
Well, it finally occured to me - predict.nnet() can't handle missing values. In that case it's not really clear what's the point of adding na.action to nnet() if I'm going to run into problems with missing values later anyway... P.S. Anybody who finds my postings insulting, please write a mail filter for my address. Although I can not understand why it may insult anybody.
2007 Jul 23
4
nnet 10-fold cross-validation
Hi It clear that to do a classification with svm under 10-fold cross validation one uses svm(Xm, newlabs, type = "C-classification", kernel = "linear",cross = 10) What corresponds to the nnet? nnet(.....,cross=10)? Regards
2003 May 25
1
Example Data Set(s) for nnet, rpart
Hi, I'm doing a presentation on Neural Networks and Tree-Based Models in two weeks, at the moment I'm looking for a data set to use in the presentation. What I would like to use is a good old data, like the Iris data, that is already known by every statisticians. MASS4 uses the cpus data in Chapter 8.10 and the Cushing's syndrome in Chapter 12.4. These two data sets plus the
2004 Feb 27
2
importing S-Plus data files
I have some data in the Linux version of S-Plus, which I can not use anymore. The program is just broken and won't run. I'm trying to find a way to import that data to either Windows version of S-Plus (which I have running on my other machine) or R (Linux or Windows, it doesn't matter). Unfortunately, nothing seems to work. Windows S-Plus seem to ignore files from Linux .Data
2006 Sep 10
2
formatting data to be analysed using multinomial logistic regression (nnet)
I am looking into using the multinomial logistic regression option in the nnet library and have two questions about formatting the data. 1. Can data be analysed in the following format or does it need to be transformed into count data, such as the housing data in MASS? Id Crime paranoia hallucinate toc disorg crimhist age 1 2 1 0 1 0 1 25 2 2 0 1 1 1 1 37 3 1 1 0 1 1 0 42 4 3 0
2002 Jun 23
2
AdaBoost for R
I'm going to implement AdaBoost algorithm in R. Just wanted to ensure that there is no implementation of any boosting algorithm in R... don't want to reinvent the wheel... -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-devel mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or
2006 Mar 10
1
need help in tune.nnet
Dear R people, I want to use the tune.nnet function of e1071 package to tune nnet . I am unable to understand the parameters of tune.nnet from the e1071 pdf document. I have performed nnet on a traindata and want to test it for class prediction with a testdata. I want to know the values of size,decay,range etc. parameters for which the prediction of testdata is best. Can anyone please tell me
2010 Oct 12
1
need help with nnet
HI, Dear R community, My data set has 2409 variables, the last one is response variable. I have used the nnet after feature selection and works. But this time, I am using nnet to fit a model without feature selection. I got the following error information: > dim(train) [1] 1827 2409 nnet.fit<-nnet(as.factor(out) ~ ., data=train, size=3, rang=0.3, decay=5e-4, maxit=500) # model
2010 Nov 26
1
Issues with nnet.default for regression/classification
Hi, I'm currently trying desperately to get the nnet function for training a neural network (with one hidden layer) to perform a regression task. So I run it like the following: trainednet <- nnet(x=traindata, y=trainresponse, size = 30, linout = TRUE, maxit=1000) (where x is a matrix and y a numerical vector consisting of the target values for one variable) To see whether the network
2008 Sep 25
5
nnet support
Dear Sir/Madam I have recently started using the nnet package but cannot find any documentation other than the one page titled 'nnet {nnet}' which is replicated several times over the internet and is found in the help file for this package. I would like more information on how to use the package and have searched extensively over the internet but cannot find anything more. Do you know of
2003 Oct 20
2
nnet behaving oddly
Hi, I was trying to use the nnet library and am not sure of whats going on. I am calling the nnet function as: n <- nnet(x,y,size=3,subset=sets[[1]], maxit=200) Where x is a 272x4 matrix of observations (examples) and y is a 272x1 matrix of target values. However when I look at nnet$residuals they are off by two orders of magnitude (compared to the output from neural network code that I
2009 Jul 24
1
nnet library and FANN package'm
Hello ! I'd like to know to which of the FANN package network corresponds the R nnet network ? In more details, what is the R nnet activation function, what is the training algorithm (rprop, quickprop, ...) ? Also, it seems that the R nnet "decay" parameter in nnet corresponds to the "learning_rate" parameter in FANN. Correct ? Many thanks in advance ! Luc Moulinier
2008 Feb 15
2
Softmax in nnet
Hi R help, I run my data in nnet with skip layer, factor response (with 0 & 1 values) and explicitly put softmax=T to compare the result of the default nnet with no softmax specification. I assume this should give me the same result. I got the result the default one, but not the softmax version and I got the error message that I did not quite understand. test6.nn.skipT.softm.Yfac <-
2009 Nov 02
1
modifying predict.nnet() to function with errorest()
Greetings, I am having trouble calculating artificial neural network misclassification errors using errorest() from the ipred package. I have had no problems estimating the values with randomForest() or svm(), but can't seem to get it to work with nnet(). I believe this is due to the output of the predict.nnet() function within cv.factor(). Below is a quick example of the problem I'm
2005 Jul 22
2
about nnet package
Dear All, I'm learning to train a neural network with my training data by using nnet package, then evaluate it with a evaluation set. My problem here is that, I need the trained network to be used in future, so, what should I store? and How? Any other options other than nnet package? Any example will be highly appreciated! Best, Baoqiang Cao
2006 Nov 22
1
What training algorithm does nnet package use?
Greetings list, I've just swapped from the "neural" package to the "nnet" package and I've noticed that the training is orders of magnitude faster, and the results are way more accurate. This leads me to wonder, what training algorithm is "nnet" using? Is it a modification on the standard backpropagation? Or a completely different algorithm? I'm
2010 Jun 17
1
help with nnet
> nnet.fit<-nnet(as.factor(out) ~ ., data=all_h, size=5, rang=0.3, decay=5e-4, maxit=500) # model fitting > summary(nnet.fit) a 23-5-1 network with 126 weights options were - entropy fitting decay=5e-04 HI, Guys, I can not find the manual to describe how the model is built, is there a more detailed description how nnet package works? -- Sincerely, Changbin -- [[alternative
2005 Aug 26
1
passing arguments from nnet to optim
Hi everyone, According to R reference manual, the nnet function uses the BFGS method of optim to optimize the neural network parameters. I would like, when calling the function nnet to tell the optim function not to produce the tracing information on the progress of the optimization, or at least to reduce the frequency of the reports. I tried the following: a) nnet default > x<-rnorm(20)
2005 Oct 11
1
an error in my using of nnet
Hi, there: I am trying nnet as followed: > mg.nnet<-nnet(x=trn3[,r.v[1:100]], y=trn3[,209], size=5, decay = 5e-4, maxit = 200) # weights: 511 initial value 13822.108453 iter 10 value 7408.169201 iter 20 value 7362.201934 iter 30 value 7361.669408 iter 40 value 7361.294379 iter 50 value 7361.045190 final value 7361.038121 converged Error in y - tmp : non-numeric argument to binary operator
2003 Oct 15
1
nnet: Too many weights?
I am using library(nnet) to train up an ANN with what I believe is a moderately sized dataset, but R is complaining about too many weights: --- > nn.1 <- nnet(t(data), targets, size = 4, rang = 0.1, decay = 5e-4, maxit = 200) Error in nnet.default(t(data), targets, size = 4, rang = 0.1, decay = 5e-04, : Too many (1614) weights > dim(targets) [1] 146 2 > dim(data) ## Note