similar to: simple (NEWBIE) question re: prcomp or princomp

Displaying 20 results from an estimated 5000 matches similar to: "simple (NEWBIE) question re: prcomp or princomp"

2006 Mar 25
1
Suggest patch for princomp.formula and prcomp.formula
Dear all, perhaps I am using princomp.formula and prcomp.formula in a way that is not documented to work, but then the documentation just says: formula: a formula with no response variable. Thus, to avoid a lot of typing, it would be nice if one could use '.' and '-' in the formula, e.g. > library(DAAG) > res <- prcomp(~ . - case - site - Pop - sex, possum)
2012 Aug 23
1
Accessing the (first or more) principal component with princomp or prcomp
Hi , To my knowledge, there're two functions that can do principal component analysis, princomp and prcomp. I don't really know the difference; the only thing I know is that when the sample size < number of variable, only prcomp will work. Could someone tell me the difference or where I can find easy-to-read reference? To access the first PC using princomp:
2009 Oct 19
2
What is the difference between prcomp and princomp?
Some webpage has described prcomp and princomp, but I am still not quite sure what the major difference between them is. Can they be used interchangeably? In help, it says 'princomp' only handles so-called R-mode PCA, that is feature extraction of variables. If a data matrix is supplied (possibly via a formula) it is required that there are at least as many units as
2009 Nov 25
1
which to trust...princomp() or prcomp() or neither?
According to R help: princomp() uses eigenvalues of covariance data. prcomp() uses the SVD method. yet when I run the (eg., USArrests) data example and compare with my own "hand-written" versions of PCA I get what looks like the opposite. Example: comparing the variances I see: Using prcomp(USArrests) ------------------------------------- Standard deviations: [1] 83.732400 14.212402
2008 Feb 10
1
prcomp vs. princomp vs fast.prcomp
Hi R People: When performing PCA, should I use prcomp, princomp or fast.prcomp, please? thanks. Erin -- Erin Hodgess Associate Professor Department of Computer and Mathematical Sciences University of Houston - Downtown mailto: erinm.hodgess at gmail.com
2004 Nov 03
2
Princomp(), prcomp() and loadings()
In comparing the results of princomp and prcomp I find: 1. The reported standard deviations are similar but about 1% from each other, which seems well above round-off error. 2. princomp returns what I understand are variances and cumulative variances accounted for by each principal component which are all equal. "SS loadings" is always 1. 3. Same happens
2006 Jun 26
1
princomp and prcomp confusion
When I look through archives at https://stat.ethz.ch/pipermail/r-help/2003-October/040525.html I see this: Liaw, Andy wrote: >In the `Detail' section of ?princomp: > >princomp only handles so-called Q-mode PCA, that is feature extraction of >variables. If a data matrix is supplied (possibly via a formula) it is >required that there are at least as many units as variables. For
2008 Nov 03
1
Input correlation matrix directly to princomp, prcomp
Hello fellow Rers, I have a no-doubt simple question which is turning into a headache so would be grateful for any help. I want to do a principal components analysis directly on a correlation matrix object rather than inputting the raw data (and specifying cor = TRUE or the like). The reason behind this is I need to use polychoric correlation coefficients calculated with John Fox's
2010 Nov 10
2
prcomp function
Hello, I have a short question about the prcomp function. First I cite the associated help page (help(prcomp)): "Value: ... SDEV the standard deviations of the principal components (i.e., the square roots of the eigenvalues of the covariance/correlation matrix, though the calculation is actually done with the singular values of the data matrix). ROTATION the matrix of variable loadings
2000 Oct 03
3
prcomp compared to SPAD
Hi ! I've used the example given in the documentation for the prcomp function both in R and SPAD to compare the results obtained. Surprisingly, I do not obtain the same results for the coordinates of the principal composantes with these two softwares. using USArrests data I obtain with R : > summary(prcomp(USArrests)) Importance of components: PC1 PC2
2009 Mar 08
2
prcomp(X,center=F) ??
I do not understand, from a PCA point of view, the option center=F of prcomp() According to the help page, the calculation in prcomp() "is done by a singular value decomposition of the (centered and possibly scaled) data matrix, not by using eigen on the covariance matrix" (as it's done by princomp()) . "This is generally the preferred method for numerical accuracy"
1998 Aug 26
0
prcomp & princomp - revised
My previous post about prcomp and princomp was done in some haste as I had long ago indicated to Kurt that I would try to have this ready for the June release, and it appeared that I would miss yet another release. I also need to get it out before it becomes hopelessly buried by other work. Brian Ripley kindly pointed out some errors, and also pointed out that I was suggesting replacing some
2003 Oct 16
1
princomp with more coloumns than rows: why not?
As of R 1.7.0, princomp no longer accept matrices with more coloumns than rows. I'm curious: Why was this decision made? I work a lot with data where more coloumns than rows is more of a rule than an exception (for instance spectroscopic data). To me, princomp have two advantages above prcomp: 1) It has a predict method, and 2) it has a biplot method. A biplot method shouldn't be too
2000 Apr 26
1
Factor Rotation
How does one rotate the loadings from a principal component analysis? Help on function prcomp() from package mva mentions rotation: Arguments retx a logical value indicating whether the rotated variables should be returned. Values rotation the matrix of variable loadings (i.e., a matrix whose olumns contain the eigenvectors). The function princomp returns this in the element
2006 Jun 16
2
bug in prcomp (PR#8994)
The following seems to be an bug in prcomp(): > test <- ts( matrix( c(NA, 2:5, NA, 7:10), 5, 2)) > test Time Series: Start = 1 End = 5 Frequency = 1 Series 1 Series 2 1 NA NA 2 2 7 3 3 8 4 4 9 5 5 10 > prcomp(test, scale.=TRUE, na.action=na.omit) Erro en svd(x, nu = 0) : infinite or missing values in 'x'
2012 May 23
1
prcomp with previously scaled data: predict with 'newdata' wrong
Hello folks, it may be regarded as a user error to scale() your data prior to prcomp() instead of using its 'scale.' argument. However, it is a user thing that may happen and sounds a legitimate thing to do, but in that case predict() with 'newdata' can give wrong results: x <- scale(USArrests) sol <- prcomp(x) all.equal(predict(sol), predict(sol, newdata=x)) ## [1]
2009 Mar 10
1
Using napredict in prcomp
Hello all, I wish to compute site scores using PCA (prcomp) on a matrix with missing values, for example: Drain Slope OrgL a 4 1 NA b 2.5 39 6 c 6 8 45 d 3 9 12 e 3 16 4 ... Where a,b... are sites. The command > pca<-prcomp(~ Drain + Slope + OrgL, data = t, center = TRUE, scale = TRUE, na.action=na.exclude) works great, and from
2011 Nov 04
1
How to use 'prcomp' with CLUSPLOT?
Hello, I have a large data set that has more columns than rows (sample data below). I am trying to perform a partitioning cluster analysis and then plot that using pca. I have tried using CLUSPLOT(), but that only allows for 'princomp' where I need 'prcomp' as I do not want to reduce my columns. Is there a way to edit the CLUSPLOT() code to use 'prcomp', please? #
2005 Aug 03
3
prcomp eigenvalues
Hello, Can you get eigenvalues in addition to eigevectors using prcomp? If so how? I am unable to use princomp due to small sample sizes. Thank you in advance for your help! Rebecca Young -- Rebecca Young Graduate Student Ecology & Evolutionary Biology, Badyaev Lab University of Arizona 1041 E Lowell Tucson, AZ 85721-0088 Office: 425BSW rlyoung at email.arizona.edu (520) 621-4005
1998 Apr 24
1
Warning: ignored non function "scale"
I've been working on a revised version of prcomp and princomp. Below is my current draft of prcomp, which is marginally different from V&R. I've added center and scale as optional arguments. However, scale causes the following: > zi _ prcomp(iris[,,2]) Warning: ignored non function "scale" because scale is both a variable and a function. Is there any way to avoid this