Displaying 20 results from an estimated 4000 matches similar to: "Dispersion in summary.glm() with binomial & poisson link"
2006 Jan 29
1
extracting 'Z' value from a glm result
Hello R users
I like to extract z values for x1 and x2. I know how to extract coefficents
using model$coef
but I don't know how to extract z values for each of independent variable. I
looked around
using names(model) but I couldn't find how to extract z values.
Any help would be appreciated.
Thanks
TM
#########################################################
>summary(model)
Call:
2011 Feb 08
1
Error in example Glm rms package
Hi all!
I've got this error while running
example(Glm)
library("rms")
> example(Glm)
Glm> ## Dobson (1990) Page 93: Randomized Controlled Trial :
Glm> counts <- c(18,17,15,20,10,20,25,13,12)
Glm> outcome <- gl(3,1,9)
Glm> treatment <- gl(3,3)
Glm> f <- glm(counts ~ outcome + treatment, family=poisson())
Glm> f
Call: glm(formula = counts ~
2009 Aug 19
3
Sweave output from print.summary.glm is too wide
Hi all
I am preparing a document using Sweave; a really useful tool. But I am having a problem.
Consider this toy example Sweave file:
\documentclass{article}
\begin{document}
<<echo=TRUE,results=verbatim>>=
options(width=40) # Set width to 40 characters
hide <- capture.output(example(glm)) # Create an example of the problem, but hide the output
summary(glm.D93) #
2005 Feb 02
1
anova.glm (PR#7624)
There may be a bug in the anova.glm function.
deathstar[32] R
R : Copyright 2004, The R Foundation for Statistical Computing
Version 2.0.1 (2004-11-15), ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project
2009 Jan 20
1
Poisson GLM
This is a basics beginner question.
I attempted fitting a a Poisson GLM to data that is non-integer ( I believe
Poisson is suitable in this case, because it is modelling counts of
infections, but the data collected are all non-negative numbers with 2
decimal places).
My question is, since R doesn't return an error with this glm fitting, is it
important that the data is non-integer. How does
2009 Feb 16
1
Overdispersion with binomial distribution
I am attempting to run a glm with a binomial model to analyze proportion
data.
I have been following Crawley's book closely and am wondering if there is
an accepted standard for how much is too much overdispersion? (e.g. change
in AIC has an accepted standard of 2).
In the example, he fits several models, binomial and quasibinomial and then
accepts the quasibinomial.
The output for residual
2009 Jun 05
2
p-values from VGAM function vglm
Anyone know how to get p-values for the t-values from the coefficients
produced in vglm?
Attached is the code and output ? see comment added to output to show
where I need p-values
+ print(paste("********** Using VGAM function gamma2 **********"))
+ modl2<-
vglm(MidPoint~Count,gamma2,data=modl.subset,trace=TRUE,crit="c")
+ print(coef(modl2,matrix=TRUE))
2003 Feb 23
2
Extracting the dispersion parameter
I have been unsuccessful in extracting the dispersion parameter in SPLUS
6.1 using
summary or summary.glm(modelobj$dispersion)
from a glm object in which the family was set to quasi. This is the syntax
given in the manual. I want to write a script to bootstrap the estimate of
the dispersion parameter, but cannot seem to access that value.
Any suggestions?
Thanks,
Ed
----------
2004 Mar 23
1
influence.measures, cooks.distance, and glm
Dear list,
I've noticed that influence.measures and cooks.distance gives different
results for non-gaussian GLMs. For example, using R-1.9.0 alpha
(2003-03-17) under Windows:
> ## Dobson (1990) Page 93: Randomized Controlled Trial :
> counts <- c(18,17,15,20,10,20,25,13,12)
> outcome <- gl(3,1,9)
> treatment <- gl(3,3)
> glm.D93 <- glm(counts ~ outcome +
2010 Apr 09
2
computation of dispersion parameter in quasi-poisson glm
Hi list,
can anybody point me to the trick how glm is computing the dispersion
parameter in quasi-poisson regression, eg.
glm(...,family="quasipoisson")?
Thanks ®ards, Sven
2002 Aug 22
2
Calculating dispersion in glm
Hi all,
How is dispersion calculated within the glm function in R ?
Cheers
_________________________________________________________________
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html
Send "info", "help", or "[un]subscribe"
(in the "body",
2005 Oct 10
3
Under-dispersion - a stats question?
Hello all:
I frequently have glm models in which the residual variance is much
lower than the residual degrees of freedom (e.g. Res.Dev=30.5, Res.DF
= 82). Is it appropriate for me to use a quasipoisson error
distribution and test it with an F distribution? It seems to me that
I could stand to gain a much-reduced standard error if I let the
procedure estimate my dispersion factor (which
2006 Oct 24
1
Cook's Distance in GLM (PR#9316)
Hi Community,
I'm trying to reconcile Cook's Distances computed in glm. The
following snippet of code shows that the Cook's Distances contours on
the plot of Residuals v Leverage do not seem to be the same as the
values produced by cooks.distance() or in the Cook's Distance against
observation number plot.
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
2009 Feb 23
1
Follow-up to Reply: Overdispersion with binomial distribution
THANKS so very much for your help (previous and future!). I have a two
follow-up questions.
1) You say that dispersion = 1 by definition ....dispersion changes from 1
to 13.5 when I go from binomial to quasibinomial....does this suggest that
I should use the binomial? i.e., is the dispersion factor more important
that the
2) Is there a cutoff for too much overdispersion - mine seems to be
2000 Apr 19
1
scale factors/overdispersion in GLM: possible bug?
I've been poking around with GLMs (on which I am *not* an expert) on
behalf of a student, particularly binomial (standard logit link) nested
models with overdispersion.
I have one possible bug to report (but I'm not confident enough to be
*sure* it's a bug); one comment on the general inconsistency that seems to
afflict the various functions for dealing with overdispersion in GLMs
2010 Nov 19
2
Question on overdispersion
I have a few questions relating to overdispersion in a sex ratio data set
that I am working with (note that I already have an analysis with GLMMs for
fixed effects, this is just to estimate dispersion). The response variable
is binomial because nestlings can only be male or female. I have samples of
1-5 nestlings from each nest (individuals within a nest are not independent,
so the response
2002 Jan 18
3
How do I know if the deviance of a glm fit was fixed?
I'm writing functions that need to behave differently for
GLMs like binomial and Poisson with fixed deviance, and those like
normal or gamma or quasi where the deviance is estimated from the
data. Given a glm object, is there a simple way to tell this
directly, or do I have to look at the name of the family?
Duncan Murdoch
2003 Jan 27
1
help page for anova.glm/variation between S-PLUS and R behavior
When using test="F" in stat.anova() / anova.glm(), R uses the assumed
dispersion parameter for the specified family (e.g. scale=1 for binomial),
while S-PLUS automatically uses the estimated dispersion parameter
(residual deviance/residual df). I think there are good reasons for the
behavior in R -- it fits with the "you get what you actually asked for"
philosophy -- and
2012 Oct 22
1
glm.nb - theta, dispersion, and errors
I am running 9 negative binomial regressions with count data.
The nine models use 9 different dependent variables - items of a clinical
screening instrument - and use the same set of 5 predictors. Goal is to
find out whether these predictors have differential effects on the items.
Due to various reasons, one being that I want to avoid overfitting models,
I need to employ identical types of
2018 Jun 03
2
aic() component in GLM-family objects
Is it generally known/has it been previously discussed here that the
$aic() component in GLM-family objects (e.g. results of binomial(),
poisson(), etc.) does not as implemented actually return the AIC, but
rather -2*log-likelihood + 2*(model_has_scale_parameter) ? Can anyone
in this forum gauge how a documentation patch would be received?
This behaviour does not seem to be documented in ?family