similar to: New package for latent trait models

Displaying 20 results from an estimated 4000 matches similar to: "New package for latent trait models"

2005 Sep 27
0
package 'ltm' -- version: 0.3-0
Dear R users, I'd like to announce the new version of the package "ltm" (available from CRAN), for fitting Latent Trait Models (including the Rasch and two-parameter logistic models) under the Item Response Theory approach. Three main extra features have been added: (i) now both ltm() and rasch() permit general fixed-value constraints (e.g., useful for scaling purposes), (ii)
2005 Sep 27
0
package 'ltm' -- version: 0.3-0
Dear R users, I'd like to announce the new version of the package "ltm" (available from CRAN), for fitting Latent Trait Models (including the Rasch and two-parameter logistic models) under the Item Response Theory approach. Three main extra features have been added: (i) now both ltm() and rasch() permit general fixed-value constraints (e.g., useful for scaling purposes), (ii)
2006 Mar 13
0
package ltm -- version 0.4-0
Dear R-users, I'd like to announce the new version of package 'ltm' for Item Response Theory analysis. The function grm() (along with supporting methods, i.e., anova, margins, factor.scores, etc.) has been added for fitting the Graded Response Model for ordinal polytomous manifest variables. An extra feature of the plot method for classes 'grm', 'ltm' and
2006 Mar 13
0
package ltm -- version 0.4-0
Dear R-users, I'd like to announce the new version of package 'ltm' for Item Response Theory analysis. The function grm() (along with supporting methods, i.e., anova, margins, factor.scores, etc.) has been added for fitting the Graded Response Model for ordinal polytomous manifest variables. An extra feature of the plot method for classes 'grm', 'ltm' and
2008 Feb 28
0
problem with the ltm package - 3PL model
Hi Xavier, the reason you observe this feature is that in the 'constraint' argument you should specify the values under the additive parameterization, i.e., when in the second column of the matrix supplied in 'constraint' you specify 2, then you need to provide the easiness parameters (not the difficulty parameters) in the third column. Check the Details section of ?tpm() and
2006 Sep 06
0
package ltm -- version 0.6-0
Dear R-users, I'd like to announce the release of the new version of package 'ltm' for analyzing multivariate dichotomous and polytomous data under the Item Response Theory approach. New features: * function tpm() (along with supporting methods, i.e., anova, plot, margins, factor.scores, etc.) has been added for fitting Birnbaum's Three Parameter Model. * grm() can now
2006 Sep 06
0
package ltm -- version 0.6-0
Dear R-users, I'd like to announce the release of the new version of package 'ltm' for analyzing multivariate dichotomous and polytomous data under the Item Response Theory approach. New features: * function tpm() (along with supporting methods, i.e., anova, plot, margins, factor.scores, etc.) has been added for fitting Birnbaum's Three Parameter Model. * grm() can now
2007 May 08
0
package ltm -- version 0.8-0
Dear R-users, I'd like to announce the release of the new version of package `ltm' (i.e., ltm_0.8-0 soon available from CRAN) for Item Response Theory analyses. This package provides a flexible framework for analyzing dichotomous and polytomous data under IRT, including the Rasch model, the Two-Parameter Logistic model, Birnbaum's Three-Parameter model, the Latent Trait model
2007 May 08
0
package ltm -- version 0.8-0
Dear R-users, I'd like to announce the release of the new version of package `ltm' (i.e., ltm_0.8-0 soon available from CRAN) for Item Response Theory analyses. This package provides a flexible framework for analyzing dichotomous and polytomous data under IRT, including the Rasch model, the Two-Parameter Logistic model, Birnbaum's Three-Parameter model, the Latent Trait model
2008 Feb 20
0
New Package 'JM' for the Joint Modelling of Longitudinal and Survival Data
Dear R-users, I'd like to announce the release of the new package JM (JM_0.1-0 available from CRAN) for the joint modelling of longitudinal and time-to-event data. The package has a single model-fitting function called jointModel(), which accepts as main arguments a linear mixed effects object fit returned by function lme() of package nlme, and a survival object fit returned by either
2008 Feb 20
0
New Package 'JM' for the Joint Modelling of Longitudinal and Survival Data
Dear R-users, I'd like to announce the release of the new package JM (JM_0.1-0 available from CRAN) for the joint modelling of longitudinal and time-to-event data. The package has a single model-fitting function called jointModel(), which accepts as main arguments a linear mixed effects object fit returned by function lme() of package nlme, and a survival object fit returned by either
2005 Sep 05
0
New package for grouped data models
Dear R-users, We'd like to announce the release of our new package "grouped" (available from CRAN), for fitting models for grouped or coarse data, under the Coarsened At Random assumption. This is useful in cases where the true response variable is known only up to an interval in which it lies. Features of the package include: power calculations for two-group comparisons,
2005 Sep 05
0
New package for grouped data models
Dear R-users, We'd like to announce the release of our new package "grouped" (available from CRAN), for fitting models for grouped or coarse data, under the Coarsened At Random assumption. This is useful in cases where the true response variable is known only up to an interval in which it lies. Features of the package include: power calculations for two-group comparisons,
2006 Jun 28
1
lme - Random Effects Struture
Thanks for the help Dimitris, However I still have a question, this time I'll be more specific, the following is my SAS code proc mixed data=Reg; class ID; model y=Time Time*x1 Time*x2 Time*x3 /S; random intercept Time /S type=UN subject=ID G GCORR V; repeated /subject = ID R RCORR; run; ** (Type =UN for random effects) The eqivalent lme statement I
2004 Oct 25
0
答复: Multiple formula in one block
Hi Dimitris: Thanks for your help, I will try. BR Yiyao -----ԭʼÓʼþ----- ·¢¼þÈË: Dimitris Rizopoulos [mailto:dimitris.rizopoulos at med.kuleuven.ac. be] ·¢ËÍʱ¼ä: 2004Äê10ÔÂ25ÈÕ 15:39 ÊÕ¼þÈË: YiYao_Jiang ³­ËÍ: r-help at stat.math.ethz.ch Ö÷Ìâ: Re: [R] Multiple formula in one block Hi YiYao, you need the `?panel.abline()' function, somehing like: panel=function(x, breaks,
2008 Apr 17
1
survreg() with frailty
Dear R-users, I have noticed small discrepencies in the reported estimate of the variance of the frailty by the print method for survreg() and the 'theta' component included in the object fit: # Examples in R-2.6.2 for Windows library(survival) # version 2.34-1 (2008-03-31) # discrepancy fit1 <- survreg(Surv(time, status) ~ rx + frailty(litter), rats) fit1 fit1$history[[1]]$theta
2007 Feb 23
1
Bootstrapping stepAIC() with glm.nb()
Dear all, I would like to Boostrap the stepAIC() procedure from package MASS for variety of model objects, i.e., fn <- function(object, data, B = 2){ n <- nrow(data) res <- vector(mode = "list", length = B) index <- sample(n, n * B, replace = TRUE) dim(index) <- c(n, B) for (i in 1:B) { up.obj <- update(object, data = data[index[, i], ])
2004 Oct 06
1
dlogis for large negative numbers
Hi to all, > dlogis(-2000) [1] NaN Warning message: NaNs produced in: dlogis(x, location, scale, log) > dnorm(-2000) [1] 0 Is this an expected behaviour of `dlogis()'? Thanks in advance for any comments, Dimitris platform i386-pc-mingw32 arch i386 os mingw32 system i386, mingw32 status major 1 minor 9.1
2004 Aug 09
1
Follow-up Q Re: displaying computation outputs inside "for" loops
I have a somewhat related question. A while back I was doing some simulations using for() loops, and I wanted to keep track of the iterations using a line of code quite similar to what Dimitris presented below. Instead of printing the iteration message at the end of each iteration (actually, at the end of every 100th), nothing was printed until the for() loop was complete, and *then* all
2006 Mar 02
2
'...' passed to both plot() and legend()
Dear R-devels, I'd like to create a plot method for a class of objects that passes the '...' argument to both plot() and legend(), e.g., x <- list(data = rnorm(1000)) class(x) <- "foo" plot.foo <- function(x, legend = FALSE, cx = "topright", cy = NULL, ...){ dx <- sort(x$data) plot(dx, dnorm(dx), type = "l", ...) if (legend)