similar to: Levels in new data fed to SVM

Displaying 20 results from an estimated 10000 matches similar to: "Levels in new data fed to SVM"

2004 Dec 16
2
reading svm function in e1071
Hi, If I try to read the codes of functions in e1071 package, it gives me following error message. >library(e1071) > svm function (x, ...) UseMethod("svm") <environment: namespace:e1071> > predict.svm Error: Object "predict.svm" not found > Can someone help me on this how to read the codes of the functions in the e1071 package? Thanks. Raj
2006 Dec 08
1
please help me for svm plot question
I run the following code, all other is ok, but plot(m.svm,p5.new,As~Cur) is not ok Anyone know why? install.packages("e1071") library(e1071) library(MASS) p5 <- read.csv("http://www.public.iastate.edu/~aiminy/data/p_5_2.csv") p5.new<-subset(p5,select=-Ms) p5.new$Y<-factor(p5.new$Y) levels(p5.new$Y) <- list(Out=c(1), In=c(0)) attach(p5.new)
2006 Dec 07
1
svm plot question
I run the following code, all other is ok, but plot(m.svm,p5.new,As~Cur) is not ok Anyone know why? install.packages("e1071") library(e1071) library(MASS) p5 <- read.csv("http://www.public.iastate.edu/~aiminy/data/p_5_2.csv") p5.new<-subset(p5,select=-Ms) p5.new$Y<-factor(p5.new$Y) levels(p5.new$Y) <- list(Out=c(1), In=c(0)) attach(p5.new)
2010 Apr 06
3
svm of e1071 package
Hello List, I am having a great trouble using svm function in e1071 package. I have 4gb of data that i want to use to train svm. I am using Amazon cloud, my Amazon Machine Image(AMI) has 34.2 GB of memory. my R process was killed several times when i tried to use 4GB of data for svm. Now I am using a subset of that data and it is only 1.4 GB. i remove all unnecessary objects before calling
2012 Dec 02
1
e1071 SVM: Cross-validation error confusion matrix
Hi, I ran two svm models in R e1071 package: the first without cross-validation and the second with 10-fold cross-validation. I used the following syntax: #Model 1: Without cross-validation: > svm.model <- svm(Response ~ ., data=data.df, type="C-classification", > kernel="linear", cost=1) > predict <- fitted(svm.model) > cm <- table(predict,
2006 Jan 18
2
Help with plot.svm from e1071
Hi. I'm trying to plot a pair of intertwined spirals and an svm that separates them. I'm having some trouble. Here's what I tried. > library(mlbench) > library(e1071) Loading required package: class > raw <- mlbench.spirals(200,2) > spiral <- data.frame(class=as.factor(raw$classes), x=raw$x[,1], y=raw$x[,2]) > m <- svm(class~., data=spiral) > plot(m,
2006 Jan 27
3
e1071: using svm with sparse matrices (PR#8527)
Full_Name: Julien Gagneur Version: 2.2.1 OS: Linux (Suse 9.3) Submission from: (NULL) (194.94.44.4) Using the SparseM library (SparseM_0.66) and the e1071 library (e1071_1.5-12) I fail using svm method with a sparse matrix. Here is a sample example. I experienced the same problem under Windows. > library(SparseM) [1] "SparseM library loaded" > library("e1071")
2001 Nov 20
2
segfault using svm from e1071 (PR#1178)
This could be a bug in the e1071 svm code, but maybe not -- I guess I'll send it here anyway. It's reproducible. > x <- seq (0.1,5,by=0.05) > y <- log(x) + rnorm (x, sd=0.2) > library(e1071) > m <- svm (x,y) Process R segmentation fault at Tue Nov 20 23:34:19 2001 > version _ platform i686-pc-linux-gnu arch i686 os
2010 May 14
4
Categorical Predictors for SVM (e1071)
Dear all, I have a question about using categorical predictors for SVM, using "svm" from library(e1071). If I have multiple categorical predictors, should they just be included as factors? Take a simple artificial data example: x1<-rnorm(500) x2<-rnorm(500) #Categorical Predictor 1, with 5 levels x3<-as.factor(rep(c(1,2,3,4,5),c(50,150,130,70,100))) #Catgegorical Predictor
2012 Mar 02
1
e1071 SVM: Cross-validation error confusion matrix
Hi, I ran two svm models in R e1071 package: the first without cross-validation and the second with 10-fold cross-validation. I used the following syntax: #Model 1: Without cross-validation: > svm.model <- svm(Response ~ ., data=data.df, type="C-classification", > kernel="linear", cost=1) > predict <- fitted(svm.model) > cm <- table(predict,
2018 Jan 10
1
svm --- type~.
Dear All: Just fixed where is the problem I am trying to use the R function "svm" with "type~." , but I got the following error message SVM.Model1 <- svm(type ~ ., data=my.data.x1x2y, *type='C-classification'*, kernel='linear',scale=FALSE) *Error in eval(predvars, data, env) : object 'type' not found* I am wondering if I should install a
2009 Apr 10
1
Built-in Code behind SVM
Hi R, I need to see the inner code behind the function "svm" in the package e1071. I enter svm in the console and get the below output. > svm function (x, ...) UseMethod("svm") <environment: namespace:e1071> Is there any way I can look into the code of what svm (support vector machine) is doing? Thanks a lot for your help... Thanks and Regards,
2018 Jan 10
1
svm
Dear All: I am trying to use the R function "svm" with "type =C-classification" , but I got the following error message SVM.Model1 <- svm(type ~ ., data=my.data.x1x2y, *type='C-classification'*, kernel='linear',scale=FALSE) *Error in eval(predvars, data, env) : object 'type' not found* I am wondering if I should install a specific R
2010 Nov 23
5
cross validation using e1071:SVM
Hi everyone I am trying to do cross validation (10 fold CV) by using e1071:svm method. I know that there is an option (?cross?) for cross validation but still I wanted to make a function to Generate cross-validation indices using pls: cvsegments method. ##################################################################### Code (at the end) Is working fine but sometime caret:confusionMatrix
2010 Jul 14
1
question about SVM in e1071
Hi, I have a question about the parameter C (cost) in svm function in e1071. I thought larger C is prone to overfitting than smaller C, and hence leads to more support vectors. However, using the Wisconsin breast cancer example on the link: http://planatscher.net/svmtut/svmtut.html I found that the largest cost have fewest support vectors, which is contrary to what I think. please see the scripts
2015 Dec 10
3
SVM hadoop
Estimados Un día leí algo en el siguiente hipervínculo, pero nunca lo use. http://blog.revolutionanalytics.com/2015/06/using-hadoop-with-r-it-depends.html Javier Rubén Marcuzzi De: Carlos J. Gil Bellosta Enviado: miércoles, 9 de diciembre de 2015 14:33 Para: MªLuz Morales CC: r-help-es Asunto: Re: [R-es] SVM hadoop No, no correrán en paralelo si usas los SVM de paquetes como e1071. No
2011 Jan 13
1
question about svm(e1071)
Dear all, I executed svm calculation using e1071 library with a microarray data (http://www.iu.a.u-tokyo.ac.jp/~kadota/R/data_Singh_RMA_3274.txt). Then, I shuffled the data samples and executed svm calculation again. The results of 2 calculation were different (in SV, coefs and weights). I attached the script below. Could please tell me why this happens? If possible please tell me how to make
2015 Dec 10
2
SVM hadoop
Hola, Puedes poner un RStudio en Amazon, poner "caret" y a correr.... No sé si tendrás suficiente con lo que te pueda ofrecer Amazon para tu problema... creo que sí... ;-).... O directamente hacerlo aquí, que toda esta instalación ya la tienen hecha: http://www.teraproc.com/front-page-posts/r-on-demand/ Gracias, Carlos. El 10 de diciembre de 2015, 14:43, MªLuz Morales <mlzmrls
2012 Mar 14
1
How to use a saved SVM model from e1071
Hello, I have an SVM model previously calibrated using libsvm R implementation from the e1071 package. I would like to use this SVM to predict values, from a Java program. I first tried to use jlibsvm and the "standard" java implementation of libsvm, without success. Thus, I am now considering writing data in files from my Java code, calling an R program to predict values, then gather
2005 Jun 29
2
Running SVM {e1071}
Dear David, Dear Friends, After any running svm I receive different results of Error estimation of 'svm' using 10-fold cross validation. What is the reason ? It is caused by the algorithm, libsvm , e1071 or something els? Which value can be optimal one ? How much run can reach to the optimality.And finally, what is difference between Error estimation of svm using 10-fold cross validation