Displaying 20 results from an estimated 4000 matches similar to: "interactions in GAMs"
2012 Nov 05
1
Post hoc tests in gam (mgcv)
Hi.
I'm analysing some fish biological traits with a gam in mgcv. After several
tries, I got this model
log(tle) = sexcolor + s(doy, bs = "cc", by = sexcolor) +log(tl)
sexcolor is a factor with 4 levels
doy is "day of year", which is modeled as a smoother
tl is "total length of the fish"
The summary of this models is (only parametric coefficientes):
Parametric
2007 Apr 08
1
Relative GCV - poisson and negbin GAMs (mgcv)
I am using gam in mgcv (1.3-22) and trying to use gcv to help with model selection. However, I'm a little confused by the process of assessing GCV scores based on their magnitude (or on relative changes in magnitude).
Differences in GCV scores often seem "obvious" with my poisson gams but with negative binomial, the decision seems less clear.
My data represent a similar pattern as
2008 Nov 15
1
GAMs and GAMMS with correlated acoustic data
Greetings
This is a long email.
I'm struggling with a data set comprising 2,278 hydroacoustic estimates of
fish biomass density made along line transects in two lakes (lakes
Michigan and Huron, three years in each lake). The data represent
lakewide surveys in each year and each data point represents the estimate
for a horizontal interval 1 km in length.
I'm interested in comparing
2013 Nov 06
3
Nonnormal Residuals and GAMs
Greetings, My question is more algorithmic than prectical. What I am
trying to determine is, are the GAM algorithms used in the mgcv package
affected by nonnormally-distributed residuals?
As I understand the theory of linear models the Gauss-Markov theorem
guarantees that least-squares regression is optimal over all unbiased
estimators iff the data meet the conditions linearity,
2012 Jul 11
2
Modifying the design matrix X in GAMS to suit data assimilation
I have a data assimilation problem that might be amenable to the use of GAMS, but I am not sure how feasible it is to implement. I was told the R mailing list was a great resource.
My observations are spatiotemporal salinity in the San Francisco Bay at a number of instruments over a few days. The thing that I want to fit is the initial condition for a salt transport model at the beginning of this
2007 Jun 15
1
interpretation of F-statistics in GAMs
dear listers,
I use gam (from mgcv) for evaluation of shape and strength of relationships
between a response variable and several predictors.
How can I interpret the 'F' values viven in the GAM summary? Is it
appropriate to treat them in a similar manner as the T-statistics in a
linear model, i.e. larger values mean that this variable has a stronger
impact than a variable with smaller F?
2007 Dec 13
1
Two repeated warnings when runing gam(mgcv) to analyze my dataset?
Dear all,
I run the GAMs (generalized additive models) in gam(mgcv) using the
following codes.
m.gam
<-gam(mark~s(x)+s(y)+s(lstday2004)+s(ndvi2004)+s(slope)+s(elevation)+disbinary,family=binomial(logit),data=point)
And two repeated warnings appeared.
Warnings$B!'(B
1: In gam.fit(G, family = G$family, control = control, gamma = gamma, ... :
Algorithm did not converge
2: In gam.fit(G,
2011 Jun 07
2
gam() (in mgcv) with multiple interactions
Hi! I'm learning mgcv, and reading Simon Wood's book on GAMs, as recommended to me earlier by some folks on this list. I've run into a question to which I can't find the answer in his book, so I'm hoping somebody here knows.
My outcome variable is binary, so I'm doing a binomial fit with gam(). I have five independent variables, all continuous, all uniformly
2007 Oct 08
2
variance explained by each term in a GAM
Hello fellow R's,
I do apologize if this is a basic question. I'm doing some GAMs using the mgcv package, and I am wondering what is the most appropriate way to determine how much of the variability in the dependent variable is explained by each term in the model. The information provided by summary.gam() relates to the significance of each term (F, p-value) and to the
2010 Jan 26
1
AIC for comparing GLM(M) with (GAM(M)
Hello
I'm analyzing a dichotomous dependent variable (dv) with more than 100
measurements (within-subjects variable: hours24) per subject and more
than 100 subjects. The high number of measurements allows me to model
more complex temporal trends.
I would like to compare different models using GLM, GLMM, GAM and
GAMM, basically do demonstrate the added value of GAMs/GAMMs relative
to
2010 Sep 03
2
Interactions in GAM
Hello R users,
I am working with the GAM to inspect the effect of some factors (year, area) and continuous variables (length, depth, latitude and longitude) on the intensity and prevalence of the common parasite Anisakis. I would like introduce interaction in my models, both "continuous variables-continuous variables" and "continuous variables-factor". I have read some
2012 Jul 30
1
te( ) interactions and AIC model selection with GAM
Hello R users,
I'm working with a time-series of several years and to analyze it, I?m using
GAM smoothers from the package mgcv. I?m constructing models where
zooplankton biomass (bm) is the dependent variable and the continuous
explanatory variables are:
-time in Julian days (t), to creat a long-term linear trend
-Julian days of the year (t_year) to create an annual cycle
- Mean temperature
2007 Feb 27
1
interactions and GAM
Dear R-users,
I have 1 remark and 1 question on the inclusion of interactions in the gam function from the gam package.
I need to fit quantitative predictors in interactions with factors. You can see an example of what I need in fig 9.13 p265 from Hastie and Tibshirani book (1990).
It's clearly stated that in ?gam "Interactions with nonparametric smooth terms are not fully
2011 Jan 18
1
Circular variables within a GLM, GLM-GEE or GAM
Hi,
I have a variable (current speed direction) which is circular (0=360 degrees), and I'd like my GLM to include the variable as a circular variable. Can I do this? And what is the code?
I'm actually doing a GLM-GEE using the 'geepack' package, so want to use it in that, but also interested in whether it can also be used in GLMs and GAMs (I use the 'mgcv' package for
2011 Apr 19
1
Prediction interval with GAM?
Hello,
Is it possible to estimate prediction interval using GAM? I looked through
?gam, ?predict.gam etc and the mgcv.pdf Simon Wood. I found it can
calculate confidence interval but not clear if I can get it to calculate
prediction interval. I read "Inference for GAMs is difficult and somewhat
contentious." in Kuhnert and Venable An Introduction to R, and wondering why
and if that
2010 Mar 19
2
Factor variables with GAM models
I'm just starting to learn about GAM models.
When using the lm function in R, any factors I have in my data set are
automatically converted into a series of binomial variables.
For example, if I have a data.frame with a column named color and values
"red", "green", "blue". The lm function automatically replaces it with
3 variables colorred, colorgreen,
2008 May 06
1
mgcv::gam shrinkage of smooths
In Dr. Wood's book on GAM, he suggests in section 4.1.6 that it might be
useful to shrink a single smooth by adding S=S+epsilon*I to the penalty
matrix S. The context was the need to be able to shrink the term to zero if
appropriate. I'd like to do this in order to shrink the coefficients towards
zero (irrespective of the penalty for "wiggliness") - but not necessarily
all the
2011 Oct 13
3
Question about GAMs
hi! I hope all of you can help me this question
for example GAMs:
ozonea<-gam(newozone~
pressure+maxtemp+s(avetemp,bs="cr")+s(ratio,bs="cr"),family=gaussian
(link=log),groupA,methods=REML)
formula(ozonea)
newozone ~ pressure + maxtemp + s(avetemp, bs = "cr") + s(ratio,bs = "cr")
#formula of gams
coef(ozonea) # extract the coefficient of GAMs
2006 Dec 04
1
GAM model selection and dropping terms based on GCV
Hello,
I have a question regarding model selection and dropping of terms for GAMs fitted with package mgcv. I am following the approach suggested in Wood (2001), Wood and Augustin (2002).
I fitted a saturated model, and I find from the plots that for two of the covariates,
1. The confidence interval includes 0 almost everywhere
2. The degrees of freedom are NOT close to 1
3. The partial
2012 May 29
1
GAM interactions, by example
Dear all,
I'm using the mgcv library by Simon Wood to fit gam models with interactions and I have been reading (and running) the "factor 'by' variable example" given on the gam.models help page (see below, output from the two first models b, and b1).
The example explains that both b and b1 fits are similar: "note that the preceding fit (here b) is the same as