similar to: Strange result from GAMLSS

Displaying 20 results from an estimated 200 matches similar to: "Strange result from GAMLSS"

2012 Jan 03
1
ED50 calculation in drc package
Hi, I am trying to use drc package to calculate IC50 value. The ED50 calculated in some models (LL4 for example) as a response half-way between the upper and lower limit, which is the definition of the relative IC50 value. Does that mean the ED50 in drc package is IC50? How the ED function in drc package distinguish to estimate ED or IC values? Thanks a lot [[alternative HTML version
2018 Mar 22
2
Broken relocation for generating offsets?
Hello, I append another clue I found out: The problem is definitely not caused by "__ImageBase" the problem comes with the "OFFSET". I generated another object file which crashed. The commonality: mov edx, DWORD PTR ?normalPlanschbecken@@3HA ; normalPlanschbecken lea rcx, OFFSET FLAT :??_C at _0CC@LCMJAIPO at Reading?5?$CCnormalPlanschbecken?$CC?5?$CFi@
2018 Mar 22
0
Broken relocation for generating offsets?
I wouldn't be surprised if JITing COFF files on Windows doesn't work so well, since the object file format assumes most symbols are dllimport or within the local 2GB module address range. I'm not familiar with the current JIT state of the art, though. On Thu, Mar 22, 2018 at 1:45 AM via llvm-dev <llvm-dev at lists.llvm.org> wrote: > Hello, > > I append another clue I
2012 Feb 22
3
gamlss results for EXP and LNO seem to have reversed AIC scores
Hi, I'm a bit puzzled by the gamlss fitting of exponential and lognormal data. Gamlss seems to think that exponentially distributed data fits better with a lognormal distribution, and vice versa. For example, X <- rexp(1000) Gexp <- gamlss(X~1,family=EXP) # X~1 is X tilde 1 GAMLSS-RS iteration 1: Global Deviance = 2037.825 GAMLSS-RS iteration 2: Global Deviance = 2037.825 Glno
2011 Nov 01
1
low sigma in lognormal fit of gamlss
Hi, I'm playing around with gamlss and don't entirely understand the sigma result from an attempted lognormal fit. In the example below, I've created lognormal data with mu=10 and sigma=2. When I try a gamlss fit, I get an estimated mu=9.947 and sigma=0.69 The mu estimate seems in the ballpark, but sigma is very low. I get similar results on repeated trials and with Normal and
2009 Nov 24
0
can't use function vcov with a GAMLSS object??
Hi everyone, I''m trying to use function vcov to extract the covariance matrix from a GAMLSS object. But I''m getting some strange errors and I was hoping someone could help me out? Vcov works with the same model for lm and glm objects, but not gamlss objects. I''ve searched various help sites to no avail. Its very possible the reason is that vcov failed though,
2012 Apr 05
0
Warning message: Gamlss - Need help
Hi, I am running a negative binomial model using Gamlss and when I try to include random effect, I get the following message: Warning messages: 1: In vcov.gamlss(object, "all") : addive terms exists in the mu formula standard errors for the linear terms maybe are not appropriate 2: In vcov.gamlss(object, "all") : addive terms exists in the sigma formula standard
2013 Jan 23
1
How to extract values of results in gamlss.tr
Dear R helpers, I have following loss data and I need to fit LEFT truncated Log Normal distribution to this data which is Truncated at 1000000. dat = c(1333834,5710254,9987567,7809469,6940935,3473671,1270209,1102523,1124002, 5830159,4302300,3925242,2638409,2324421,7238436,9088709,7439250,4976551,4864319, 8741334,1863770,7098310,4942288,4971829,4986372) library(gamlss.tr) gen.trun(5, LOGNO)
2018 May 10
1
Tackling of convergence issues in gamlss vs glm2
Hello: I'd like to know how and if the GLM convergence problems are addressed in gamlss. For simplicity, let's focus on Normal and Negative Binomial with log link. The convergence issues of the glm() function were alleviated in 2011 when glm2 package was released. Package gamlss was released in 2012, so it might still use the glm-like solution or call glm() directly. Is that the case or
2008 Mar 25
2
gamlss and glm binomial family
Dear all and Mikis I have the opportunity to compare fits with the 'classical' glm and gamlss and no smoother of any kind just the same model formula (both with the binomial family). I get exactly the same coefficients but very different residuals, gamlss giving residuals which are extremely close to 'normal' and glm very far... How can this be ? Thanks in advance for
2011 Mar 19
1
GAMLSS Question
Dear All: I have succeeded in fitting a GAMLSS.dist model to growth data I am working with it. My aim is to create a matrix of predicted percentiles and the corresponding the fitted model's sigma mu nu by agebins. Q: How do it generate these parameters as in L M S per Cole and Green 1992? Here are my working codes. Name of fitted model is gamlssfit > Agebin<-seq(6,36,6)
2008 Nov 06
0
gamlss.dist
Hi, I'm not sure how use curve(dexGAUS(… None of the following four works: rt<- rexGAUS(100, mu=300, nu=100, sigma=35) m1<-gamlss(rt~1, family=exGAUS) curve(dexGAUS(rt=x, mu=300 ,sigma=35,nu=100), 100, 600, main = "The ex- GAUS density mu=300 ,sigma=35,nu=100") curve(dexGAUS(x=rt, mu=300 ,sigma=35,nu=100), 100, 600, main = "The ex- GAUS density mu=300
2012 Oct 31
0
gamlss mu.start vector ?
Dear All, I'd like to set up a loop whereby successive parameter values are used as start values in gamlss (yes I know this isn't usually necessary ! - unfortunately for my truncated data it is), to return the estimated parameters etc. giving the lowest AIC value. I notice that mu.start can take a vector of values - but I can't find any information as to what the function actually
2010 Mar 15
0
testing hipotheses using GAMLSS package
Hi all. In a GLM in which g(mu) = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7, if I want to test if b1 + b5 = b2 + b6, I can use the contrast package or multicomp package. How can I do a similar test if I am fitting a GAMLSS using the gamlss package? Thank you for your help. Gustavo
2018 Mar 09
0
Package gamlss used inside foreach() and %dopar% fails to find an object
If the code you are running in parallel is complicated, maybe foreach is not sophisticated enough to find all the variables you refer to. Maybe use parallel::clusterExport yourself? But be a aware that passing parameters is much safer than directly accessing globals in parallel processing, so this might just be your warning to not do that anyway. -- Sent from my phone. Please excuse my brevity.
2011 Apr 19
0
Prediction in gamlss package
Hello! I've just build one-inflated beta regression model using package GAMLSS. It all worked very nicely but now I want to make prediction using it. I use typical function predict() give all necessary arguments (my new data is in data frame and all relevant columns have same names as before). Unfortunately it ends with following error: Error in nrow(x) : (subscript) logical subscript too
2011 Jan 18
0
gamlss for censored and truncated distributions
Dear R Help, I'd like to be able to use gamlss to generate distributions that are both truncated and have censoring. It doesn't look as though it is possible to do this at the moment: > gen.trun(par=c(0),family="NO",name="tr",type="left") A truncated family of distributions from NO has been generated and saved under the names: dNOtr pNOtr qNOtr rNOtr
2018 Mar 10
0
. Package gamlss used inside foreach() and %dopar% fails to find an object (Nik Tuzov)
Dear Nik Try the following code loo_predict.mu <- function(model.obj, input.data) { yhat <- foreach(i = 1 : nrow(input.data), .packages="gamlss", .combine = rbind) %dopar% { updated.model.obj <- update(model.obj, data = input.data[-i, ]) predict(updated.model.obj, what = "mu", data = input.data[-i, ], newdata = input.data[i,], type =
2018 Mar 09
2
Package gamlss used inside foreach() and %dopar% fails to find an object
Hello all: Please help me with this "can't find object" issue. I'm trying to get leave-one-out predicted values for Beta-binomial regression. It may be the gamlss issue because the code seems to work when %do% is used. I have searched for similar issues, but haven't managed to figure it out. This is on Windows 10 platform. Thanks in advance, Nik #
2016 Mar 07
2
Efectos aleatorios anidados en gamlss
Hola a tod en s, tengo una duda que la comunidad R me puede ayudar. Estoy trabajando con gamlss, porque tengo una variable respuesta con valores entre 0 y 1 e incluidos estos. La distribución que utilizo com gamlss para este caso es "beta inflated" (Stasinopulos and Rigby 2007. Journal of Statistical Software 23(7)). El modelo que intento correr es: m1<-gamlss(Teleosteos ~