similar to: Error in mice

Displaying 20 results from an estimated 4000 matches similar to: "Error in mice"

2013 Oct 29
3
Ayuda con Mice con polyreg
Saludo gente, antes que nada gracias por la ayuda que puedan aportarme, soy iniciante en R, estoy usando el paquete Mice para realizar imputaciones múltiples sobre variables en su mayoría categóricas. El problema está que cuando expresó este comando imp <- mice(dataset,method="polr",maxit=1) donde el dataset es un data.frame me tirá este error : iter imp variable 1 1 pial1a
2008 Feb 15
2
Softmax in nnet
Hi R help, I run my data in nnet with skip layer, factor response (with 0 & 1 values) and explicitly put softmax=T to compare the result of the default nnet with no softmax specification. I assume this should give me the same result. I got the result the default one, but not the softmax version and I got the error message that I did not quite understand. test6.nn.skipT.softm.Yfac <-
2010 Jul 14
1
Changing model parameters in the mi package
I am trying to use the mi package to impute data, but am running into problems with the functions it calls. For instance, I am trying to impute a categorical variable called "min.func." The mi() function calls the mi.categorical() function to deal with this variable, which in turn calls the nnet.default() function, and passes it a fixed parameter MaxNWts=1500. However, as
2005 Feb 08
1
Toying with neural networks
Hello all, Ive been playing with nnet (package 'nnet') and Ive come across this problem. nnet doesnt seems to like to have more than 1000 weights. If I do: > data(iris) > names(iris)[5] <- "species" > net <- nnet(species ~ ., data=iris, size=124, maxit=10) # weights: 995 initial value 309.342009 iter 10 value 21.668435 final value 21.668435 stopped after 10
2011 Nov 01
2
multivariate random variable
Dear All,   How can I generate multivariate random variable (not multivariate normal )   I am in urgent [[alternative HTML version deleted]]
2013 Oct 29
0
Fwd: Ayuda con Mice con polyreg
Saludo gente, antes que nada gracias por la ayuda que puedan aportarme, soy iniciante en R, estoy usando el paquete Mice para realizar imputaciones múltiples sobre variables en su mayoría categóricas. El problema está que cuando expresó este comando imp <- mice(dataset,method="polr",maxit=1) donde el dataset es un data.frame me tirá este error : iter imp variable 1 1 pial1a
2011 Jan 07
1
Adjusting MaxNwts in MICE Package
Hi, I'm trying to impute a large data set using mice but I keep getting this: Error in nnet.default(X, Y, w, mask = mask, size = 0, skip = TRUE, softmax = TRUE, : too many (2944) weights nnet.default uses the argument MaxNWts to set a maximum number of weights. I've tried to change nnet.default to get around this, but mice is somehow still passing an argument that sets the maximum
2013 Jan 14
0
Changing MaxNWts with the mi() function (error message)
Hello, I am trying to impute data with the mi() function (mi package) and keep receiving an error message. When imputing the variable, "sex," the mi() function accesses the mi.categorical() function, which then accesses the nnet() function. I then receive the following error message (preceded by my code below): > imputed.england=mi(england.pre.imputed, n.iter=6, add.noise=FALSE)
2012 Sep 11
1
Find correlation in Clmm?
Hi all, I am trying to fit a random effect  model to categorical response variable using package "ordinal" /"clmm". How can I find the correlation between random effects (random intercept and random slope)   Thanks in advance  Ana [[alternative HTML version deleted]]
2007 Nov 30
0
problem using MICE with option "lda"
Hi I am unable to impute using the MICE command in R when imputing a binary variable using linear discriminant analysis. To illustrate my problem I have created a dataset, which consists of 1 continuous and 1 binary variable. The continuous variable is complete and the binary variable is partially observed. I am able to impute using the MICE command where the imputation methods is logistic
2004 Mar 30
1
classification with nnet: handling unequal class sizes
I hope this question is adequate for this list I use the nnet code from V&R p. 348: The very nice and general function CVnn2() to choose the number of hidden units and the amount of weight decay by an inner cross-validation- with a slight modification to use it for classification (see below). My data has 2 classes with unequal size: 45 observations for classI and 116 obs. for classII With
2013 Oct 30
2
disculpe las molestias ...ayuda con MICE
Saludo gente, antes que nada gracias por la ayuda que puedan aportarme, soy iniciante en R, estoy usando el paquete Mice para realizar imputaciones múltiples sobre variables en su mayoría categóricas. El problema está que cuando expresó este comando imp <- mice(dataset,method="polr",maxit=1) donde el dataset es un data.frame me tirá este error : iter imp variable 1 1 pial1a
2011 Jul 26
2
error in ordgee
  I am trying to used "ordgee" from "geepack" for an ordinal dataset. When I write the code it returns  "Warning message:In binomial(link) : use of binomial(link=link) is deprecated" , but the program runs. Even when I run your example for "ohio" and "respdis", it returns the same error. Please guide me [[alternative HTML version deleted]]
2005 Apr 11
4
R: function code
HI sorry to be a nuisance to all!!! how can i see the code of a particular function? e.g. nnet just as an example
2007 Jul 23
4
nnet 10-fold cross-validation
Hi It clear that to do a classification with svm under 10-fold cross validation one uses svm(Xm, newlabs, type = "C-classification", kernel = "linear",cross = 10) What corresponds to the nnet? nnet(.....,cross=10)? Regards
2013 Oct 30
1
disculpe las molestias ...ayuda con MICE
Muchas gracias, pero claro en una muestra de 50 datos se ejecuta, en la muestra original de 1000 registros me tira error :( 2013/10/30 daniel <daniel319@gmail.com> > Amalia, > > No obtengo tus resultados. Corrí tus formulas y datos y el resultado es > x <- structure(list(ï..psraid = c(202517L, 202518L, 202520L, 202523L, > + 202527L, 202537L, 202543L, 202544L, 202551L,
2003 Oct 20
2
nnet behaving oddly
Hi, I was trying to use the nnet library and am not sure of whats going on. I am calling the nnet function as: n <- nnet(x,y,size=3,subset=sets[[1]], maxit=200) Where x is a 272x4 matrix of observations (examples) and y is a 272x1 matrix of target values. However when I look at nnet$residuals they are off by two orders of magnitude (compared to the output from neural network code that I
2003 Jul 11
2
Nonliner Rgression using Neural Nnetworks
Hi, I am an old hand at chemistry but a complete beginner at statistics including R computations. My question is whether you can carry out nonlinear multivariate regression analysis in R using neural networks, where the output variable can range from -Inf to + Inf., unlike discriminant analysis where the output is confined to one or zero. The library nnet seems to work only in the latter
2011 Aug 01
1
Impact of multiple imputation on correlations
Dear all, I have been attempting to use multiple imputation (MI) to handle missing data in my study. I use the mice package in R for this. The deeper I get into this process, the more I realize I first need to understand some basic concepts which I hope you can help me with. For example, let us consider two arbitrary variables in my study that have the following missingness pattern: Variable 1
2012 Jan 04
0
Error formal argument "softmax" matched by multiple actual arguments
I am running the nnet package as > neural.soft<-nnet(custcat~region+ed+marital+tenure+age+address+income,size=3,softmax=TRUE) This returns the error message : formal argument "softmax" matched by multiple actual arguments Here the dependent variable "custcat" is a factor with 4-levels. This error does not crop up for any other arguments of nnet(), including