Displaying 20 results from an estimated 7000 matches similar to: "Re: frailty models in survreg() -- survival package (PR#2934)"
2003 May 07
0
Re: frailty models in survreg() -- survival package (PR#2934)
SEE ALSO ORIGINAL POSTING IN PR#2933
On May 6, 2003 03:58 pm, Thomas Lumley wrote:
>
> Looking at a wider context in the code
>
> pfun <- function(coef, theta, ndeath) {
> if (theta == 0)
> list(recenter = 0, penalty = 0, flag = TRUE)
> else {
> recenter <- log(mean(exp(coef)))
> coef <- coef - recenter
2003 May 07
0
frailty models in survreg() -- survival package (PR#2933)
I am confused on how the log-likelihood is calculated in a parametric
survival problem with frailty. I see a contradiction in the frailty() help
file vs. the source code of frailty.gamma(), frailty.gaussian() and
frailty.t().
The function frailty.gaussian() appears to calculate the penalty as the
negative log-density of independent Gaussian variables, as one would
expect:
>
2007 Jan 22
0
[UNCLASSIFIED] predict.survreg() with frailty term and newdata
Dear All,
I am attempting to make predictions based on a survreg() model with some censoring and a frailty term, as below: predict works fine on the original data, but not if I specify newdata.
# a model with groups as fixed effect
model1 <- survreg(Surv(y,cens)~ x1 + x2 + groups,
dist = "gaussian")
# and with groups as a random effect
fr <- frailty(groups,
2008 Apr 18
0
survreg with frailty
The combination of survreg + gamma frailty = invalid model, i.e., the example
that you quote.
I did not realize that this had been added to the survreg help file until very
recently. I will try to fix the oversight. Other, more detailed documentation
states that Gaussian frailty + AIC is the only valid random effects choice for
survreg.
Details: frailty(x) with no optional
2011 Apr 08
1
Variance of random effects: survreg()
I have the following questions about the variance of the random effects in the survreg() function in the survival package:
1) How can I extract the variance of the random effects after fitting a model?
For example:
set.seed(1007)
x <- runif(100)
m <- rnorm(10, mean = 1, sd =2)
mu <- rep(m, rep(10,10))
test1 <- data.frame(Time = qsurvreg(x, mean = mu, scale= 0.5, distribution =
2008 Apr 17
1
survreg() with frailty
Dear R-users,
I have noticed small discrepencies in the reported estimate of the
variance of the frailty by the print method for survreg() and the
'theta' component included in the object fit:
# Examples in R-2.6.2 for Windows
library(survival) # version 2.34-1 (2008-03-31)
# discrepancy
fit1 <- survreg(Surv(time, status) ~ rx + frailty(litter), rats)
fit1
fit1$history[[1]]$theta
2012 Feb 10
0
coxme with frailty
A couple of clarifications for you.
1. I write mixed effects Cox models as exp(X beta + Z b), beta = fixed
effects coefficients and b = random effects coefficients. I'm using
notation that is common in linear mixed effects models (on purpose).
About 2/3 of the papers use exp(X beta)* c, i.e., pull the random
effects out of the exponent. Does it make a difference? Not much: b
will be
2005 Jan 06
0
Parametric Survival Models with Left Truncation, survreg
Hi,
I would like to fit parametric survival models to time-to-event data
that are left truncated. I have checked the help page for survreg and
looked in the R-help archive, and it appears that the R function survreg
from the survival library (version 2.16) should allow me to take account
of left truncation. However, when I try the command
2002 Oct 08
2
Frailty and coxph
Does someone know the rules by which 'coxph' returns 'frail', the
predicted frailty terms? In my test function:
-----------------------------------------------
fr <- function(){
#testing(frailty terms in 'survival'
require(survival)
dat <- data.frame(exit = 1:6,
event = rep(1, 6),
x = rep(c(0, 1), 3),
2009 Jan 07
0
Frailty by strata interactions in coxph (or coxme)?
Hello,
I was hoping that someone could answer a few questions for me (the background is given below):
1) Can the coxph accept an interaction between a covariate and a frailty term
2) If so, is it possible to
a) test the model in which the covariate and the frailty appear as main terms using the penalized likelihood (for gaussian/t frailties)
b)augment model 1) by stratifying on the variable that
2006 Feb 28
1
ex-Gaussian survival distribution
Dear R-Helpers,
I am hoping to perform survival analyses using the "ex-Gaussian"
distribution.
I understand that the ex-Gaussian is a convolution of exponential and
Gaussian
distributions for survival data.
I checked the "survreg.distributions" help and saw that it is possible to
mix
pre-defined distributions. Am I correct to think that the following code
makes
the
2005 Sep 07
1
Survival analysis with COXPH
Dear all,
I would have some questions on the coxph function for survival analysis,
which I use with frailty terms.
My model is:
mdcox<-coxph(Surv(time,censor)~ gender + age + frailty(area, dist='gauss'),
data)
I have a very large proportion of censored observations.
- If I understand correctly, the function mdcox$frail will return the random
effect estimated for each group on the
2005 Sep 08
1
Survival model with cross-classified shared frailties
Dear All,
The "coxph" function in the "survival" package allows multiple frailty
terms. In all the examples I saw, however, the frailty terms are nested.
What will happen if I have non-nested (that is, cross-classified) frailties
in the model? Will the model still work? Do I need to take special cares
when specifying these models? Thanks!
Shige
[[alternative HTML
2004 Nov 17
1
frailty and time-dependent covariate
Hello,
I'm trying to estimate a cox model with a frailty variable and time-dependent covariate (below there is the statement I use and the error message). It's seems to be impossible, because every time I add the time-dependent covariate the model doesn't converge. Instead, if I estimate the same model without the time-dependent covariate it's converge. I'd like knowing if
2011 Jan 28
1
survreg 3-way interaction
> I was wondering why survreg (in survival package) can not handle
> three-way interactions. I have an AFT .....
You have given us no data to diagnose your problem. What do you mean
by "cannot handle" -- does the package print a message "no 3 way
interactions", gives wrong answers, your laptop catches on fire when you
run it, ....?
Also, make sure you read
2011 Sep 20
0
Using method = "aic" with pspline & survreg (survival library)
Hi everybody. I'm trying to fit a weibull survival model with a spline
basis for the predictor, using the survival library. I've noticed that it
doesn't seem to be possible to use the aic method to choose the degrees of
freedom for the spline basis in a parametric regression (although it's
fine with the cox model, or if the degrees of freedom are specified directly
by the user),
2004 Nov 08
1
coxph models with frailty
Dear R users:
I'm generating the following survival data:
set.seed(123)
n=200 #sample size
x=rbinom(n,size=1,prob=.5) #binomial treatment
v=rgamma(n,shape=1,scale=1) #gamma frailty
w=rweibull(n,shape=1,scale=1) #Weibull deviates
b=-log(2) #treatment's slope
t=exp( -x*b -log(v) + log(w) ) #failure times
c=rep(1,n) #uncensored indicator
id=seq(1:n) #individual frailty indicator
2005 Jul 21
1
output of variance estimate of random effect from a gamma frailty model using Coxph in R
Hi,
I have a question about the output for variance of random effect from a gamma
frailty model using coxph in R. Is it the vairance of frailties themselves or
variance of log frailties? Thanks.
Guanghui
2005 May 31
1
Shared Frailty in survival package (left truncation, time-dep. covariates)
Dear list,
I want o fit a shared gamma frailty model with the frailty specification in the survival package.
I have partly left-truncated data and time-dependent covariates. Is it possible to
combine these two things in the frailty function. Or are the results wrong if I use data in the start-stop-formulation which account for delayed entry?
Is the frailty distribution updated in the
2007 Jan 22
0
predict.survreg() with frailty term and newdata
It can't be done with the current code.
In a nutshell, you are trying to use a feature that I never got around to
coding. It's been on my "to do" list, but may never make it to the top.
Terry