similar to: segfault using svm from e1071 (PR#1178)

Displaying 20 results from an estimated 10000 matches similar to: "segfault using svm from e1071 (PR#1178)"

2003 Apr 03
1
SVM module: scaling data applied to new test set without using SVM again
Hello! We are new in using R. We use the SVM module from the library ''e1071'' for training. Problem formulation: a classification has been performed using SVM module (linear kernel). Later, a new data set (test set) comparable to the training data shall be scaled in the same way as the training set (using the same scaling parameter set, but without using the SVM again
2003 Feb 06
1
svm
Hello list, I want to apply svm from library e1071, and I want to supply class weights. I do not really understand the help entry (and there is no example) class.weights: a named vector of weights for the different classes, used for asymetric class sizes. Not all factor levels have to be supplied (default weight: 1). All components have to be named. I have two
2003 Apr 16
2
import data from Matlab & error msg when install package "e1071"
Hello, I am trying to import data from Matlab.. when i looked up R documentation, it says, package "e1071" have command (read.octave) to import data from octave. but when I tried to install package by using: install.packages("e1071"); I got the following message: ( BTW, my platform is linux version 2.4.18-3 my gcc is 2.96). * Installing *source* package 'e1071' ...
2001 Mar 30
1
SVM support vector machine
Hi all, sorry for my previuos question that was incomplete... i would like to test the SVM (support vector machine) algorithm? is somebody know if there are available program for R or S? thanks... -- -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- Olivier MARTIN phone: (33) 04 76 61 53 55 Projet IS2 06 08 67 93 42 INRIA Rhone-Alpes
2006 Jan 18
2
Help with plot.svm from e1071
Hi. I'm trying to plot a pair of intertwined spirals and an svm that separates them. I'm having some trouble. Here's what I tried. > library(mlbench) > library(e1071) Loading required package: class > raw <- mlbench.spirals(200,2) > spiral <- data.frame(class=as.factor(raw$classes), x=raw$x[,1], y=raw$x[,2]) > m <- svm(class~., data=spiral) > plot(m,
2004 Dec 18
1
erro in SVM (packsge "e1071")
Hello, I am using SVM under e1071 package for nu-regression with 18 parameters. The variables are ordered factors, factors, date or numeric datatypes. I use the linear kernel. It gives the following error that I cannot solve. I tryed debug, browser and all that stuff, but no way. The error is: Error in get(ctr, mode = "function", envir = parent.frame())(levels(x), :
2003 Dec 10
3
e1071:svm - default epsilon = 0.1 (NOT 0.5) (PR#5671)
In e1071 package/svm default epsilon value is set to 0.1 and not 0.5 as documentation says. R
2004 Dec 16
2
reading svm function in e1071
Hi, If I try to read the codes of functions in e1071 package, it gives me following error message. >library(e1071) > svm function (x, ...) UseMethod("svm") <environment: namespace:e1071> > predict.svm Error: Object "predict.svm" not found > Can someone help me on this how to read the codes of the functions in the e1071 package? Thanks. Raj
2006 Dec 07
1
svm plot question
I run the following code, all other is ok, but plot(m.svm,p5.new,As~Cur) is not ok Anyone know why? install.packages("e1071") library(e1071) library(MASS) p5 <- read.csv("http://www.public.iastate.edu/~aiminy/data/p_5_2.csv") p5.new<-subset(p5,select=-Ms) p5.new$Y<-factor(p5.new$Y) levels(p5.new$Y) <- list(Out=c(1), In=c(0)) attach(p5.new)
2006 Jan 27
3
e1071: using svm with sparse matrices (PR#8527)
Full_Name: Julien Gagneur Version: 2.2.1 OS: Linux (Suse 9.3) Submission from: (NULL) (194.94.44.4) Using the SparseM library (SparseM_0.66) and the e1071 library (e1071_1.5-12) I fail using svm method with a sparse matrix. Here is a sample example. I experienced the same problem under Windows. > library(SparseM) [1] "SparseM library loaded" > library("e1071")
2012 Dec 02
1
e1071 SVM: Cross-validation error confusion matrix
Hi, I ran two svm models in R e1071 package: the first without cross-validation and the second with 10-fold cross-validation. I used the following syntax: #Model 1: Without cross-validation: > svm.model <- svm(Response ~ ., data=data.df, type="C-classification", > kernel="linear", cost=1) > predict <- fitted(svm.model) > cm <- table(predict,
2010 May 14
4
Categorical Predictors for SVM (e1071)
Dear all, I have a question about using categorical predictors for SVM, using "svm" from library(e1071). If I have multiple categorical predictors, should they just be included as factors? Take a simple artificial data example: x1<-rnorm(500) x2<-rnorm(500) #Categorical Predictor 1, with 5 levels x3<-as.factor(rep(c(1,2,3,4,5),c(50,150,130,70,100))) #Catgegorical Predictor
2010 Apr 06
3
svm of e1071 package
Hello List, I am having a great trouble using svm function in e1071 package. I have 4gb of data that i want to use to train svm. I am using Amazon cloud, my Amazon Machine Image(AMI) has 34.2 GB of memory. my R process was killed several times when i tried to use 4GB of data for svm. Now I am using a subset of that data and it is only 1.4 GB. i remove all unnecessary objects before calling
2003 Jan 31
1
svm regression in R
Hallo, I have a question concerning SVM regression in R. I intend to use SVMs for feature selection (and knowledge discovery). For this purpose I will need to extract the weights that are associated with my features. I understand from a previous thread on SVM classification, that predictive models can be derived from SVs, coefficiants and rhos, but it is unclear for me how to transfer this
2004 Dec 17
3
How to interpret and modify "plot.svm"?
Dear R people, I am trying to plot the results from running svm in library(e1071). I use plot.svm. After searching through the help archives and FAQ, I still have several questions: 1. In default, crosses indicate support vectors. But why are there two colors of crosses? What do they represent? 2. I want to draw a white-gray colored plot and modify the different colored crosses or circles by
2010 Nov 23
5
cross validation using e1071:SVM
Hi everyone I am trying to do cross validation (10 fold CV) by using e1071:svm method. I know that there is an option (?cross?) for cross validation but still I wanted to make a function to Generate cross-validation indices using pls: cvsegments method. ##################################################################### Code (at the end) Is working fine but sometime caret:confusionMatrix
2005 Jun 28
2
svm and scaling input
Dear All, I've a question about scaling the input variables for an analysis with svm (package e1071). Most of my variables are factors with 4 to 6 levels but there are also some numeric variables. I'm not familiar with the math behind svms, so my assumtions maybe completely wrong ... or obvious. Will the svm automatically expand the factors into a binary matrix? If I add numeric
2009 Jul 07
2
Question in using e1071 svm routine
Hi all, I've got the following error message in using e1071 svm routine... Could anybody please help me? Thank you! --------------------------------- model <- svm(y=factor(mytraindata[, 1]), x=mytraindata[, -1], probability=T) Error in if (any(co)) { : missing value where TRUE/FALSE needed In addition: Warning message: In FUN(newX[, i], ...) : NAs introduced by coercion
2012 Mar 02
1
e1071 SVM: Cross-validation error confusion matrix
Hi, I ran two svm models in R e1071 package: the first without cross-validation and the second with 10-fold cross-validation. I used the following syntax: #Model 1: Without cross-validation: > svm.model <- svm(Response ~ ., data=data.df, type="C-classification", > kernel="linear", cost=1) > predict <- fitted(svm.model) > cm <- table(predict,
2010 May 05
2
probabilities in svm output in e1071 package
svm.fit<-svm(as.factor(out) ~ ., data=all_h, method="C-classification", kernel="radial", cost=bestc, gamma=bestg, cross=10) # model fitting svm.pred<-predict(svm.fit, hh, decision.values = TRUE, probability = TRUE) # find the probability, but can not find. attr(svm.pred, "probabilities") > attr(svm.pred, "probabilities") 1 0 1 0 0 2 0