similar to: Typo in the documentation of prcomp. (PR#569)

Displaying 20 results from an estimated 4000 matches similar to: "Typo in the documentation of prcomp. (PR#569)"

2000 Jun 15
1
prcomp help: is this a typo?
Dear All, The help for prcomp, under "Value" says: sdev: the standard deviation of the principal components (i.e., the eigenvalues of the cov matrix, though the calculation is actually done with the singular values of the data matrix). The way I read it, it implies that the sdev are the eigenvalues, but I think that sdev is actually the square root of the
2005 Aug 03
3
prcomp eigenvalues
Hello, Can you get eigenvalues in addition to eigevectors using prcomp? If so how? I am unable to use princomp due to small sample sizes. Thank you in advance for your help! Rebecca Young -- Rebecca Young Graduate Student Ecology & Evolutionary Biology, Badyaev Lab University of Arizona 1041 E Lowell Tucson, AZ 85721-0088 Office: 425BSW rlyoung at email.arizona.edu (520) 621-4005
2010 Nov 10
2
prcomp function
Hello, I have a short question about the prcomp function. First I cite the associated help page (help(prcomp)): "Value: ... SDEV the standard deviations of the principal components (i.e., the square roots of the eigenvalues of the covariance/correlation matrix, though the calculation is actually done with the singular values of the data matrix). ROTATION the matrix of variable loadings
2013 Mar 14
2
Same eigenvalues but different eigenvectors using 'prcomp' and 'principal' commands
Dear all, I've used the 'prcomp' command to calculate the eigenvalues and eigenvectors of a matrix(gg). Using the command 'principal' from the 'psych' packageĀ  I've performed the same exercise. I got the same eigenvalues but different eigenvectors. Is there any reason for that difference? Below are the steps I've followed: 1. PRCOMP #defining the matrix
2012 Jun 20
1
prcomp: where do sdev values come from?
In the manual page for prcomp(), it says that sdev is "the standard deviations of the principal components (i.e., the square roots of the eigenvalues of the covariance/correlation matrix, though the calculation is actually done with the singular values of the data matrix)." ?However, this is not what I'm finding. ?The values appear to be the standard deviations of a reprojection of
2009 Nov 25
1
which to trust...princomp() or prcomp() or neither?
According to R help: princomp() uses eigenvalues of covariance data. prcomp() uses the SVD method. yet when I run the (eg., USArrests) data example and compare with my own "hand-written" versions of PCA I get what looks like the opposite. Example: comparing the variances I see: Using prcomp(USArrests) ------------------------------------- Standard deviations: [1] 83.732400 14.212402
2008 Sep 09
4
PCA and % variance explained
After doing a PCA using princomp, how do you view how much each component contributes to variance in the dataset. I'm still quite new to the theory of PCA - I have a little idea about eigenvectors and eigenvalues (these determine the variance explained?). Are the eigenvalues related to loadings in R? Thanks, Paul -- View this message in context:
2009 Nov 09
4
prcomp - principal components in R
Hello, not understanding the output of prcomp, I reduce the number of components and the output continues to show cumulative 100% of the variance explained, which can't be the case dropping from 8 components to 3. How do i get the output in terms of the cumulative % of the total variance, so when i go from total solution of 8 (8 variables in the data set), to a reduced number of
2013 Apr 26
1
prcomp( and cmdscale( not equivalent?
Hello, I have a dilemma that I'm hoping the R gurus will be able to help resolve. For background: My data is in the form of a (dis)similarity matrix created from taking the inverse of normalized reaction times. That is, each cell of the matrix represents how long it took to distinguish two stimuli from one another-- a square matrix of 45X45 where the diagonal values are all zero (since this
2012 Apr 09
1
sdev, variance in prcomp
Hello, It might be a trivial question but I just wanted to find out the relationship between sdev and proportion of variance generated by prcomp. I got the following result from my data set ???????????????????????????? PC1????? PC2????? PC3 Standard deviation???? 104.89454 15.40910 9.012047 Proportion of Variance?? 0.52344? 0.01130 0.003860 Cumulative Proportion??? 0.52344? 0.53474 0.538600
2011 May 28
1
prcomp & eigenvectors ... ??
Hi ... Please could you help with probably a very simple problem I have. I'm completely new to R and am trying to follow a tutorial using R for Force Distribution Analysis that I got from ... http://projects.eml.org/mbm/website/fda_gromacs.htm. Basically, the MDS I preform outputs a force matrix (.fm) from the force simulation I perform. Then, this matrix is read into R and prcomp is
2009 Mar 10
1
Using napredict in prcomp
Hello all, I wish to compute site scores using PCA (prcomp) on a matrix with missing values, for example: Drain Slope OrgL a 4 1 NA b 2.5 39 6 c 6 8 45 d 3 9 12 e 3 16 4 ... Where a,b... are sites. The command > pca<-prcomp(~ Drain + Slope + OrgL, data = t, center = TRUE, scale = TRUE, na.action=na.exclude) works great, and from
2007 Jul 02
2
Question about PCA with prcomp
Hello All, The basic premise of what I want to do is the following: I have 20 "entities" for which I have ~500 measurements each. So, I have a matrix of 20 rows by ~500 columns. The 20 entities fall into two classes: "good" and "bad." I eventually would like to derive a model that would then be able to classify new entities as being in "good
2003 Jan 03
4
factor analysis (pca): how to get the 'communalities'?
Dear expe-R-ts, I try some test data for a factorAnalysis (resp. pca) in the sense of Prof. Ripley's MASS ? 11.1, p. 330 ff., just to prepare myself for an analysis of my own empirical data using R (instead of SPSS). 1. the data. ## The test data is (from the book of Backhaus et al.: Multivariate ## Analysemethoden. Springer 2000 [9th ed.], p. 300 ff):
1998 Aug 26
0
prcomp & princomp - revised
My previous post about prcomp and princomp was done in some haste as I had long ago indicated to Kurt that I would try to have this ready for the June release, and it appeared that I would miss yet another release. I also need to get it out before it becomes hopelessly buried by other work. Brian Ripley kindly pointed out some errors, and also pointed out that I was suggesting replacing some
2004 Nov 03
2
Princomp(), prcomp() and loadings()
In comparing the results of princomp and prcomp I find: 1. The reported standard deviations are similar but about 1% from each other, which seems well above round-off error. 2. princomp returns what I understand are variances and cumulative variances accounted for by each principal component which are all equal. "SS loadings" is always 1. 3. Same happens
2005 Aug 14
4
PCA problem in R
Dear all: When I have more variables than units, say a 195*10896 matrix which has 10896 variables and 195 samples. prcomp will give only 195 principal components. I checked in the help, but there is no explanation that why this happen. Can we get more than 195 PCs for this case? Thank you very much. Best! Alan Aug-12-2005
1998 Apr 24
1
Warning: ignored non function "scale"
I've been working on a revised version of prcomp and princomp. Below is my current draft of prcomp, which is marginally different from V&R. I've added center and scale as optional arguments. However, scale causes the following: > zi _ prcomp(iris[,,2]) Warning: ignored non function "scale" because scale is both a variable and a function. Is there any way to avoid this
2016 Mar 30
1
reg-tests-1a fails with r70391
Hi, This may be a `transitional' bug but I am reporting a make check fail with R-devel r70391 in reg-tests-1a.Rout. The tail of reg-tests-1a.Rout.fail is > ## prcomp(tol=1e-6) > x <- matrix(runif(30),ncol=10) > s <- prcomp(x, tol=1e-6) > stopifnot(length(s$sdev) == ncol(s$rotation)) Error: length(s$sdev) == ncol(s$rotation) is not TRUE Execution halted Looking at
2011 May 11
0
stats:::biplot.prcomp: Scaling, typo in the help file?
Dear all, >From the documentation of biplot.prcomp: scale: The variables are scaled by 'lambda ^ scale' and the observations are scaled by 'lambda ^ (1-scale)' where 'lambda' are the singular values as computed by 'princomp'. >From the source code of prcomp: lam <- x$sdev[choices] n <- NROW(scores) lam <- lam * sqrt(n)