similar to: Pasting with Quotes

Displaying 20 results from an estimated 2000 matches similar to: "Pasting with Quotes"

2008 Jun 25
1
stringdot
Hi!! I am trying to figure out how to use the string kernel "stringdot" in kernlab. k <- function(x,y) { (sum(x*y) +1)*exp(-0.001*sum((x-y)^2)) } class(k) <- "kernel" data(promotergene) ## train svm using custom kernel gene.k <- ksvm(Class~.,data=promotergene,kernel=k,C=10,cross=5) # works fine in this case gene.rbf <-
2009 Oct 23
1
Data format for KSVM
Hi, I have a process using svm from the e1071 library. it works. I want to try using the KSVM library instead. The same data used wiht e1071 gives me an error with KSVM. My data is a data.frame. sample code: svm_formula <- formula(y ~ a + B + C) svm_model <- ksvm(formula, data=train_data, type="C-svc", kernel="rbfdot", C=1) I get the following error:
2009 Dec 25
2
Help with SVM package Kernlab
Hi useR's, I am resending this request since I got no response for my last post and I am new to the list so pardon me if I am violating the protocol. I am trying to use the "Kernlab" package for training and prediction using SVM's. I am getting the following error when I am trying to use the predict function: > predictSvm = predict(modelforSVM, testSeq); Error in
2012 Aug 19
1
kernlab | ksvm error
Dear list, I am using the ksvm function from kernlab as follows: (1) learning > svm.pol4 <- ksvm(class.labs ~ ., data = train.data, prob.model = T, scale = T, kernel = "polydot") (2) prediction > svm.pol.prd4 <- predict(svm.pol4, train.data, type = "probabilities")[,2] But unfortunately, when calling the prediction, once in every 10s of times (using the exact
2012 Nov 15
1
Can't see what i did wrong..
with pred.pca<-predict(splits[[i]]$pca,trainingData at samples)[,1:nPCs] dframe<-as.data.frame(cbind(pred.pca,class=isExplosive(trainingData,2))); results[[i]]$classifier<-ksvm(class~.,data=dframe,scaled=T,kernel="polydot",type="C-svc", C=C,kpar=list(degree=degree,scale=scale,offset=offset),prob.model=T) and a degree of 5 i get an error of 0 reported by the ksvm
2011 Jan 24
5
Train error:: subscript out of bonds
Hi, I am trying to construct a svmpoly model using the "caret" package (please see code below). Using the same data, without changing any setting, I am just changing the seed value. Sometimes it constructs the model successfully, and sometimes I get an ?Error in indexes[[j]] : subscript out of bounds?. For example when I set seed to 357 following code produced result only for 8
2009 Sep 06
2
Regarding SVM using R
Hi Abbas, Before I try to give you answers, I just want to mention that you should send R related reqests to the R-help list, and not me personally because (i) there's a greater likelihood that it will get answered in a timely manner, and (ii) people who might have a similar problem down the road might benefit from any answer via searching the list archives ... anyway: On Sep 5, 2009, at
2007 Sep 12
0
one-class SVM in kernlab
Hello, I'm trying to using ksvm() in the kernlab package to fit a one-class SVC, but I get a strage result on the cross-validation error estimate. For example, consider this code: data(spam) classifier <- ksvm(type~.,data=spam[which(spam[,'type']=='spam'),], type="one-svc",kernel="rbfdot",kpar=list(sigma=0.1),nu=0.05,cross=10) what I get is: >
2013 Nov 15
1
Inconsistent results between caret+kernlab versions
I'm using caret to assess classifier performance (and it's great!). However, I've found that my results differ between R2.* and R3.* - reported accuracies are reduced dramatically. I suspect that a code change to kernlab ksvm may be responsible (see version 5.16-24 here: http://cran.r-project.org/web/packages/caret/news.html). I get very different results between caret_5.15-61 +
2012 Jul 31
1
kernlab kpca predict
Hi! The kernlab function kpca() mentions that new observations can be transformed by using predict. Theres also an example in the documentation, but as you can see i am getting an error there (As i do with my own data). I'm not sure whats wrong at the moment. I haven't any predict functions written by myself in the workspace either. I've tested it with using the matrix version and the
2010 Sep 24
0
kernlab:ksvm:eps-svr: bug?
Hi, A. In a nutshell: The training error, obtained as "error (ret)", from the return value of a ksvm () call for a eps-svr model is (likely) being computed wrongly. "nu-svr" and "eps-bsvr" suffer from this as well. I am attaching three files: (1) ksvm.R from the the kernlab package, un-edited, (2) ksvm_eps-svr.txt: (for easier reading) containing only eps-svr
2007 Aug 14
0
kernlab ksvm() cross-validation prediction response vector
Hello, I would like to know, whether for the support vector classification function ksvm() the response values stored in object at ymatrix are cross validated outputs/predictions: Example code from package kernlab, function ksvm: library(kernlab) ## train a support vector machine filter <- ksvm(type~.,data=spam,kernel="rbfdot",kpar=list(sigma=0.05),C=5,cross=3) filter filter at
2009 Nov 29
2
kernlab's ksvm method freeze
Hello, I am using kernlab to do some binary classification on aminoacid strings. I am using a custom kernel, so i use the kernel="matrix" option of the ksvm method. My (normalized) kernel matrix is of size 1309*1309, my results vector has the same length. I am using C-svc. My kernlab call is something similiar to this: ksvm(kernel="matrix", kernelMatrix, trainingDataYs,
2009 Dec 24
0
Error with Package "Kernlab" for SVM prediction
Hi All, I am trying to use the "Kernlab" package for training and prediction using SVM's. I am getting the following error when I am trying to use the predict function: > predictSvm = predict(modelforSVM, testSeq); Error in `contrasts<-`(`*tmp*`, value = "contr.treatment") : contrasts can be applied only to factors with 2 or more levels The training file is a
2009 Apr 28
1
kernlab - custom kernel
hi, I am using R's "kernlab" package, exactly i am doing classification using ksvm(.) and predict.ksvm(.).I want use of custom kernel. I am getting some error. # Following R code works (with promotergene dataset): library("kernlab") s <- function(x, y) { sum((x*y)^1.25) } class(s) <- "kernel" data("promotergene") gene <- ksvm(Class ~ .,
2010 Mar 16
2
Missing index in vector assignment
Dear r-helpers, I am getting a mismatch error between two variables: svp <- ksvm(x, y, type="nu-svc") Error in .local(x, ...) : x and y don't match. and I suspect that it might be due to missing index in the y variable which I defined as: y <- (LVvar[,1]) I tried various methods to make the y assignment in the same format as x, which is a dataframe x <-
2011 Aug 26
1
kernlab: ksvm() bug?
Hello all, I'm trying to run a gird parameter search for a svm. Therefore I'M using the ksvm function from the kernlab package. ---- svp <- ksvm(Ktrain,ytrain,type="nu-svc",nu=C) ---- The problem is that the optimization algorithm does not return for certain parameters. I tried to use setTimeLimit() but that doesn't seem to help. I suspect that ksvm() calls c code that
2009 Jul 08
1
ksvm question -- help! line search failed...
I got the data working, but now I got another problem with KSVM: line search fails -2.793708 -0.5831701 1.870406e-05 -5.728611e-06 -5.059796e-08 -3.761822e-08 -7.308871e-13Error in prob.model(object)[[p]]$A : $ operator is invalid for atomic vectors On Tue, Jul 7, 2009 at 6:45 PM, Steve Lianoglou<mailinglist.honeypot at gmail.com> wrote: > Hi, > > On Jul 7, 2009, at 6:44 PM,
2012 Sep 14
1
Plotting DMAs (Direct Marketing Areas)
Hey useRs! Do any of you guys know how to plot DMAs within R (preferrably within the maps() package)? I haven't been able to find any resources on this, but I apologize if this is a dumb question and I'm overlooking the obvious answer. Thanks for your help! Josh [[alternative HTML version deleted]]
2006 Nov 24
1
How to find AUC in SVM (kernlab package)
Dear all, I was wondering if someone can help me. I am learning SVM for classification in my research with kernlab package. I want to know about classification performance using Area Under Curve (AUC). I know ROCR package can do this job but I found all example in ROCR package have include prediction, for example, ROCR.hiv {ROCR}. My problem is how to produce prediction in SVM and to find