Displaying 20 results from an estimated 2000 matches similar to: "Lasso for k-subset regression"
2009 Mar 17
1
Double Cross validation for LASSO
Dear R user,
I am looking for a code on double cross validation in
LASSO , one for optimizing the parameter and other one is for MSEP. If any
one have it, please foroward to me. I am using different package like LARS,
chemometric etc.
Thanks in advance
Alex
[[alternative HTML version deleted]]
2013 Jul 06
1
problem with BootCV for coxph in pec after feature selection with glmnet (lasso)
Hi,
I am attempting to evaluate the prediction error of a coxph model that was
built after feature selection with glmnet.
In the preprocessing stage I used na.omit (dataset) to remove NAs.
I reconstructed all my factor variables into binary variables with dummies
(using model.matrix)
I then used glmnet lasso to fit a cox model and select the best performing
features.
Then I fit a coxph model
2011 May 28
1
Questions regrading the lasso and glmnet
Hi all. Sorry for the long email. I have been trying to find someone local to work on this with me, without much luck. I went in to our local stats consulting service here, and the guy there told me that I already know more about model selection than he does. :-< He pointed me towards another professor that can perhaps help, but that prof is busy until mid-June, so I want to get as much
2009 Aug 21
1
LASSO: glmpath and cv.glmpath
Hi,
perhaps you can help me to find out, how to find the best Lambda in a
LASSO-model.
I have a feature selection problem with 150 proteins potentially
predicting Cancer or Noncancer. With a lasso model
fit.glm <- glmpath(x=as.matrix(X), y=target, family="binomial")
(target is 0, 1 <- Cancer non cancer, X the proteins, numerical in
expression), I get following path (PICTURE
2010 Jul 31
1
Feature selection via glmnet package (LASSO)
Hello,
I'm trying to select features of cetain numbers(like 100 out of 1000) via
LASSO, based on multinomial model, however, it seems the glmnet package
provides a very sparse estimation of coefficients(most of coefficients are
0), which selects very few number of variables, like only 10, based on my
easy dataset.
I try to connect the choice of lambda to the selecting
2023 Oct 22
1
running crossvalidation many times MSE for Lasso regression
Dear R-experts,
Here below my R code with an error message. Can somebody help me to fix this error??
Really appreciate your help.
Best,
############################################################
#?MSE CROSSVALIDATION Lasso regression?
library(glmnet)
?
2023 Oct 22
2
running crossvalidation many times MSE for Lasso regression
No error message shown Please include the error message so that it is
not necessary to rerun your code. This might enable someone to see the
problem without running the code (e.g. downloading packages, etc.)
-- Bert
On Sun, Oct 22, 2023 at 1:36?PM varin sacha via R-help
<r-help at r-project.org> wrote:
>
> Dear R-experts,
>
> Here below my R code with an error message. Can
2012 Mar 27
2
lasso constraint
In the package lasso2, there is a Prostate Data. To find coefficients in the
prostate cancer example we could impose L1 constraint on the parameters.
code is:
data(Prostate)
p.mean <- apply(Prostate, 5,mean)
pros <- sweep(Prostate, 5, p.mean, "-")
p.std <- apply(pros, 5, var)
pros <- sweep(pros, 5, sqrt(p.std),"/")
pros[, "lpsa"] <-
2012 May 13
1
R package dependency issues when namespace is not attached
I have always assumed that having a package in the 'Depends' field
would automatically also?import?the namespace. However, it seems that
in R 2.15, dependencies do not become available until the package is
actually?attached?to the searchpath. Is this intended behavior?
The problem appears as follows: Suppose there is a package 'Child'
which?Depends, but does not explicitly
2013 Nov 29
1
Lasso function that can handle NA values
Hi everyone,
I have a large dataset with missing values. I tried using glmnet, but it seems that it cannot handle NA values in the design matrix. I also tried lars, but I get an error too. Does anyone know of any package for computing the lasso solution which handles NA values?
2011 Jul 22
4
glmnet with binary logistic regression
Hi all,
I am using the glmnet R package to run LASSO with binary logistic
regression. I have over 290 samples with outcome data (0 for alive, 1 for
dead) and over 230 predictor variables. I currently using LASSO to reduce
the number of predictor variables.
I am using the cv.glmnet function to do 10-fold cross validation on a
sequence of lambda values which I let glmnet determine. I then take
2011 Mar 25
2
A question on glmnet analysis
Hi,
I am trying to do logistic regression for data of 104 patients, which
have one outcome (yes or no) and 15 variables (9 categorical factors
[yes or no] and 6 continuous variables). Number of yes outcome is 25.
Twenty-five events and 15 variables mean events per variable is much
less than 10. Therefore, I tried to analyze the data with penalized
regression method. I would like please some of the
2023 Oct 23
2
running crossvalidation many times MSE for Lasso regression
For what it's worth it looks like spm2 is specifically for *spatial*
predictive modeling; presumably its version of CV is doing something
spatially aware.
I agree that glmnet is old and reliable. One might want to use a
tidymodels wrapper to create pipelines where you can more easily switch
among predictive algorithms (see the `parsnip` package), but otherwise
sticking to glmnet
2023 Oct 23
1
running crossvalidation many times MSE for Lasso regression
Dear R-experts,
I really thank you all a lot for your responses. So, here is the error (and warning) messages at the end of my R code.
Many thanks for your help.
Error in UseMethod("predict") :
? no applicable method for 'predict' applied to an object of class "c('matrix', 'array', 'double', 'numeric')"
> mean(unlist(lst))
[1] NA
2012 Jul 12
1
lars package to do lasso
Dear all
I am using lars package to do lasso in R. I dont undesrtand what max.steps do?and how I can understand from the outputs to obtain the last steps in this packagethanks for your helpbest
[[alternative HTML version deleted]]
2011 May 01
1
Different results of coefficients by packages penalized and glmnet
Dear R users:
Recently, I learn to use penalized logistic regression. Two packages
(penalized and glmnet) have the function of lasso.
So I write these code. However, I got different results of coef. Can someone
kindly explain.
# lasso using penalized
library(penalized)
pena.fit2<-penalized(HRLNM,penalized=~CN+NoSus,lambda1=1,model="logistic",standardize=TRUE)
pena.fit2
2011 May 24
1
seeking help on using LARS package
Hi,
I am writing to seek some guidance regarding using Lasso regression with the
R package LARS. I have introductory statistics background but I am trying to
learn more. Right now I am trying to duplicate the results in a paper for
shRNA prediction "An accurate and interpretable model for siRNA efficacy
prediction, Jean-Philippe Vert et. al, Bioinformatics" for a Bioinformatics
project
2023 Oct 24
1
running crossvalidation many times MSE for Lasso regression
?s 20:12 de 23/10/2023, varin sacha via R-help escreveu:
> Dear R-experts,
>
> I really thank you all a lot for your responses. So, here is the error (and warning) messages at the end of my R code.
>
> Many thanks for your help.
>
>
> Error in UseMethod("predict") :
> ? no applicable method for 'predict' applied to an object of class
2011 Aug 10
2
glmnet
Hi All,
I have been trying to use glmnet package to do LASSO linear regression. my x data is a matrix n_row by n_col and y is a vector of size n_row corresponding to the vector data. The number of n_col is much more larger than the number of n_row. I do the following:
fits = glmnet(x, y, family="multinomial")I have been following this
2010 Jul 08
1
glmnet - choosing the number of features
Hi,
I am trying to use the glmnet package to do some simple feature selection.
However, I would ideally like to be able to specify the number of features
to return (the glmnet package, as far as I can tell, only allows
specification of a regularization parameter, lambda, that in turn returns a
model with a specific number of non-zero features).
Is there a straightforward way of calculating the