Displaying 20 results from an estimated 4000 matches similar to: "Dataset Quasi Poisson"
2010 Apr 09
2
computation of dispersion parameter in quasi-poisson glm
Hi list,
can anybody point me to the trick how glm is computing the dispersion
parameter in quasi-poisson regression, eg.
glm(...,family="quasipoisson")?
Thanks ®ards, Sven
2011 Jan 27
1
Quasi-poisson glm and calculating a qAIC and qAICc...trying to modilfy Bolker et al. 2009 function to work for a glm model
Sorry about re-posting this, it never went out to the mailing list when I
posted this to r-help forum on Nabble and was pending for a few days, now
that I am subscribe to the mailing list I hope that this goes out:
I've been a viewer of this forum for a while and it has helped out a lot,
but this is my first time posting something.
I am running glm models for richness and abundances. For
2009 Nov 20
1
different results across versions for glmer/lmer with the quasi-poisson or quasi-binomial families: the lattest version might not be accurate...
Dear R-helpers,
this mail is intended to mention a rather trange result and generate potential useful comments on it. I am not aware of another posts on this issue ( RSiteSearch("quasipoisson lmer version dispersion")).
MUsing the exemple in the reference of the lmer function (in lme4 library) and turning it into a quasi-poisson or quasi-binomial analysis, we get different results,
2010 Sep 12
1
R-equivalent Stata command: poisson or quasipoisson?
Hello R-help,
According to a research article that covers the topic I'm analyzing,
in Stata, a Poisson pseudo-maximum-likelihood (PPML) estimation can be
obtained with the command
poisson depvar_ij ln(indepvar1_ij) ln(indepvar2_ij) ...
ln(indepvarN_ij), robust
I looked up Stata help for the command, to understand syntax and such:
www.stata.com/help.cgi?poisson
Which simply says
2003 Jan 16
3
Overdispersed poisson - negative observation
Dear R users
I have been looking for functions that can deal with overdispersed poisson
models. Some (one) of the observations are negative. According to actuarial
literature (England & Verall, Stochastic Claims Reserving in General
Insurance , Institute of Actiuaries 2002) this can be handled through the
use of quasi likelihoods instead of normal likelihoods. The presence of
negatives is not
2010 Jul 06
1
nls + quasi-poisson distribution
Hello R-helpers,
I would like to fit a non-linear function to data (Discrete X axis,
over-dispersed Poisson values on the Y axis).
I found the functions gnlr in the gnlm package from Jim Lindsey: this can
handle nonlinear regression equations for the parameters of Poisson and
negative binomial distributions, among others. I also found the function
nls2 in the software package
2003 Jul 04
1
Quasi AIC
Dear all,
Using the quasibinomial and quasipoisson families results in no AIC being
calculated. However, a quasi AIC has actually been defined by Lebreton et al
(1992). In the (in my opinon, at least) very interesting book by Burnham and
Anderson (1998,2002) this QAIC (and also QAICc) is covered. Maybe this is something
that could be implemented in R.
Take a look at page 23 in this pdf:
2010 Feb 17
0
Help with sigmoidal quasi-poisson regression using glm and gnm functions
Hi everyone,
I'm trying to perform the following regressions in order to compare linear
vs. sigmoidal fit of the relationship between my dependent variable (y) and
one explaining parameter (x2), both including the confounding effects of a
third variable (x1):
quasi-pois-lin <- glm(y ~ x1 + x2, family = quasipoisson(link="identity"),
data=fit)
quasi-pois-sig <- gnm(y ~ x1 +
2009 Aug 13
2
Fitting a quasipoisson distribution to univariate data
Dear all,
I am analyzing counts of seabirds made from line transects at sea.
I have been fitting Poisson and negative binomial distributions to the data
using the goodfit function from the vcd library. I would also like to
evaluate how well a quasi-poisson distribution fits the data. However, none
of the potentially suitable functions I have identified (goodfit(vcd),
fitdistr(MASS),
2008 Oct 31
1
AIC for quasipoisson link
Dear fellows,
I'm trying to extract the AIC statistic from a GLM model with quasipoisson link.
The formula I'm referring to is
AIC = -2(maximum loglik) + 2df * phi
with phi the overdispersion parameter, as reported in:
Peng et al., Model choice in time series studies os air pollution and mortality. J R Stat Soc A, 2006; 162: pag 190.
Unfortunately, the function logLik
2006 Jun 12
1
variance specification using glm and quasi
Hi all,
Cameron and Trivedi in their 1998 Regression Analysis of Count Data refer to
NB1 and NB2
NB1 is the negative binomial model with variance = mu + (alpha * mu^1)
yielding (1+alpha)*mu
NB2 sets the power to 2; hence, variance = mu + (alpha*mu^2)
I think that NB2 can be requested via
negbin2<-glm(hhm~sex+age,family=quasi(var="mu^2",link="log"))
Is
2005 Oct 10
3
Under-dispersion - a stats question?
Hello all:
I frequently have glm models in which the residual variance is much
lower than the residual degrees of freedom (e.g. Res.Dev=30.5, Res.DF
= 82). Is it appropriate for me to use a quasipoisson error
distribution and test it with an F distribution? It seems to me that
I could stand to gain a much-reduced standard error if I let the
procedure estimate my dispersion factor (which
2003 Mar 12
2
quasipoisson, glm.nb and AIC values
Dear R users,
I am having problems trying to fit quasipoisson and negative binomials glm.
My data set
contains abundance (counts) of a species under different management regimens.
First, I tried to fit a poisson glm:
> summary(model.p<-glm(abund~mgmtcat,poisson))
Call:
glm(formula = abund ~ mgmtcat, family = poisson)
.
.
.
(Dispersion parameter
2011 Apr 07
1
Quasipoisson with geeglm
Dear all,
I am trying to use the GEE methodology to fit a trend for the number of butterflies observed at several sites. In total, there are 66 sites, and 19 years for which observations might be available. However, only 326 observations are available (instead of 1254). For the time being, I ignore the large number of missing values, and the fact that GEE is only valid under MCAR. When I run the
2012 Sep 25
1
REML - quasipoisson
hi
I'm puzzled as to the relation between the REML score computed by gam and
the formula (4) on p.4 here:
http://opus.bath.ac.uk/22707/1/Wood_JRSSB_2011_73_1_3.pdf
I'm ok with this for poisson, or for quasipoisson when phi=1.
However, when phi differs from 1, I'm stuck.
#simulate some data
library(mgcv)
set.seed(1)
x1<-runif(500)
x2<-rnorm(500)
2012 Oct 14
2
Poisson Regression: questions about tests of assumptions
I would like to test in R what regression fits my data best. My dependent
variable is a count, and has a lot of zeros.
And I would need some help to determine what model and family to use
(poisson or quasipoisson, or zero-inflated poisson regression), and how to
test the assumptions.
1) Poisson Regression: as far as I understand, the strong assumption is
that dependent variable mean = variance.
2007 Feb 13
1
lme4/lmer: P-Values from mcmc samples or chi2-tests?
Dear R users,
I have now tried out several options of obtaining p-values for
(quasi)poisson lmer models, including Markov-chain Monte Carlo sampling
and single-term deletions with subsequent chi-square tests (although I
am aware that the latter may be problematic).
However, I encountered several problems that can be classified as
(1) the quasipoisson lmer model does not give p-values when
2009 Oct 05
2
GLM quasipoisson error
Hello,
I'm having an error when trying to fit the next GLM:
>>model<-glm(response ~ CLONE_M + CLONE_F + HATCHING
+(CLONE_M*CLONE_F) + (CLONE_M*HATCHING) + (CLONE_F*HATCHING) +
(CLONE_M*CLONE_F*HATCHING), family=quasipoisson)
>> anova(model, test="Chi")
>Error in if (dispersion == 1) Inf else object$df.residual :
missing value where TRUE/FALSE needed
If I fit
2013 Jan 31
2
glm poisson and quasipoisson
Hello,
I have a question about modelling via glm. I have a dataset (see dput)
that looks like as if it where poisson distributed (actually I would
appreciate that) but it isnt because mean unequals var.
> mean (x)
[1] 901.7827
> var (x)
[1] 132439.3
Anyway, I tried to model it via poisson and quasipoisson. Actually, just to
get an impression how glm works. But I dont know how to
2006 Jul 10
2
about overdispersed poisson model
Dear R users
I have been looking for functions that can deal with overdispersed poisson
models. According to actuarial literature (England & Verall, Stochastic Claims
Reserving in General Insurance , Institute of Actiuaries 2002) this can be handled through the
use of quasi likelihoods instead of normal likelihoods. However, we see them frequently
in this type of data, and we would like to