Displaying 20 results from an estimated 300 matches similar to: "Mixed-effects model for overdispersed count data?"
2008 Dec 17
1
Model building using lmer
Dear R-experts,
Quite new to R on this end, but learning fast (I hope).
I am running version 2.7.1 on Windows Vista. I have small dataset
which consists of:
# NestID: nest indicator for each chicken. Siblings sharing the same nest have the same nest indicator.
# Chick: chick indicator consisting of a unique ID for each single chick.
# Year: 1, 2.
# ClutchSize: 1-, 2- , 3-eggs.
# HO:
2005 Jun 17
0
glmmADMB: Mixed models for overdispersed and zero-inflated count data in R
Dear R-users,
Earlier this year I posted a message to this list regarding
negative binomial mixed models in R. It was suggested that
the program I had written should be turned into an R-package.
This has now been done, in collaboration with David Fournier
and Anders Nielsen.
The R-package glmmADMB provides the following GLMM framework:
- Negative binomial or Poisson responses.
- Zero-inflation
2006 Feb 24
1
SE of parameter estimates in glmm.admb
Dear R users,
Does anyone know how to get standard errors of the
parameter estimates in glmm.admb?
Thanks,
Istvan
2002 Jun 06
1
generating overdispersed poisson & negative binomial data
I would like to try a simple parametric bootstrap, but unfortunately
(stupidly?) my models are "overdispersed" gams & glms.
I'm hoping for a function that generates overdispersed poisson or negative
binomial data with a given mean, scale (& shape parameter).
The loose definition I'm using is overdispersed poisson produces integer
values with variance=const*mean &
2006 Nov 13
1
stepAIC for overdispersed Poisson
I am wondering if stepAIC in the MASS library may be used for model
selection in an overdispersed Poisson situation. What I thought of doing
was to get an estimate of the overdispersion parameter phi from fitting
a model with all or most of the available predictors (we have a large
number of observations so this should not be problematical) and then use
stepAIC with scale = phi. Should this
2005 Sep 30
0
p-value for non-linear variable in overdispersed glm()
Dear all,
I am fitting an nonlinear glm() using optim() by first minimising
glm(resp~ var1 + var2, family=binomial, data=data)$deviance
where var1= exp(-a1*dist1), and var2= exp(-a2*dist2), where a1 and a2 are
parameters and dist1 and dist2 are independent variables.
Next, I calculate the value of var1 (and var2) by plugging in the value of
al1 (and al2) that minimises deviance,
and fit
2006 Jul 10
2
about overdispersed poisson model
Dear R users
I have been looking for functions that can deal with overdispersed poisson
models. According to actuarial literature (England & Verall, Stochastic Claims
Reserving in General Insurance , Institute of Actiuaries 2002) this can be handled through the
use of quasi likelihoods instead of normal likelihoods. However, we see them frequently
in this type of data, and we would like to
2005 Jun 09
0
New package aod: Analysis of Overdispersed Data
Information on package 'aod'
Description:
Package: aod
Version: 1.1-2
Date: 2005-06-08
Title: Analysis of Overdispersed Data
Author: Matthieu Lesnoff <matthieu.lesnoff at cirad.fr> and Renaud
Lancelot <renaud.lancelot at cirad.fr>
Maintainer: Renaud Lancelot <renaud.lancelot at cirad.fr>
Depends: R (>=
2005 Jun 09
0
New package aod: Analysis of Overdispersed Data
Information on package 'aod'
Description:
Package: aod
Version: 1.1-2
Date: 2005-06-08
Title: Analysis of Overdispersed Data
Author: Matthieu Lesnoff <matthieu.lesnoff at cirad.fr> and Renaud
Lancelot <renaud.lancelot at cirad.fr>
Maintainer: Renaud Lancelot <renaud.lancelot at cirad.fr>
Depends: R (>=
2008 Aug 17
0
Error fitting overdispersed logistic regression: package dispmod
Hi all,
First, a quick thank you for R; it's amazing.
I am trying to fit models for a count dataset following the overdispersed logisitic regression approach outlined in Baggerly et al. (BMC Bioinformatics, 5:144; Annotated R code is given at the end of the paper) but R is returning an error with the data below. Any help in understanding or overcoming this obstacle is appreciated.
2011 Aug 27
1
Overdispersed GLM
Hi all,
I have the following data:
rep1_treat rep2_treat rep1_control rep2_control
2 3 4 5
100 20 98 54
0 1 2 3
23 32 27
2011 Aug 27
1
hopelessly overdispersed?
dear list!
i am running an anlysis on proportion data using binomial (quasibinomial
family) error structure. My data comprises of two continuous vars, body
size and range size, as well as of feeding guild, nest placement, nest
type and foragig strata as factors. I hope to model with these variables
the preference of primary forests (#successes) by certain bird species.
My code therefore looks
2010 Nov 19
2
Question on overdispersion
I have a few questions relating to overdispersion in a sex ratio data set
that I am working with (note that I already have an analysis with GLMMs for
fixed effects, this is just to estimate dispersion). The response variable
is binomial because nestlings can only be male or female. I have samples of
1-5 nestlings from each nest (individuals within a nest are not independent,
so the response
2003 Jan 16
3
Overdispersed poisson - negative observation
Dear R users
I have been looking for functions that can deal with overdispersed poisson
models. Some (one) of the observations are negative. According to actuarial
literature (England & Verall, Stochastic Claims Reserving in General
Insurance , Institute of Actiuaries 2002) this can be handled through the
use of quasi likelihoods instead of normal likelihoods. The presence of
negatives is not
2012 Sep 04
1
ADMB error- function maximizer failed (couldnt find STD file)
Greetings glmmADMB function users,
I am trying to run a series of models using the glmmADMB function with several different distribution families (e.g., poisson, negbinom). I am using a Optiplex 790 PC with Windows 7, 16.0 GB of RAM and a 64-bit operating system. I am running R version 2.15.0 and started out using the most recent version of glmmADMB (I believe version 7.2.15).
My data is zero
2005 Dec 14
3
glmmADMB: Generalized Linear Mixed Models using AD Model Builder
Dear R-users,
Half a year ago we put out the R package "glmmADMB" for fitting
overdispersed count data.
http://otter-rsch.com/admbre/examples/glmmadmb/glmmADMB.html
Several people who used this package have requested
additional features. We now have a new version ready.
The major new feature is that glmmADMB allows Bernoulli responses
with logistic and probit links. In addition there
2011 Sep 03
1
help with glmm.admb
R glmmADMB question
I am trying to use glmm.admb (the latest alpha version
from the R forge website 0.6.4) to model my count data
that is overdispersed using a negative binomial family but
keep getting the following error message:
Error in glmm.admb(data$total_bites_rounded ~
age_class_back, random = ~food.dif.id, :
Argument "group" must be a character string specifying
the
2010 Jun 02
1
Problems using gamlss to model zero-inflated and overdispersed count data: "the global deviance is increasing"
Dear all,
I am using gamlss (Package gamlss version 4.0-0, R version 2.10.1, Windows XP Service Pack 3 on a HP EliteBook) to relate bird counts to habit variables. However, most models fail because “the global deviance is increasing” and I am not sure what causes this behaviour. The dataset consists of counts of birds (duck) and 5 habit variables measured in the field (n= 182). The dependent
2006 Jan 30
4
Logistic regression model selection with overdispersed/autocorrelated data
I am creating habitat selection models for caribou and other species with
data collected from GPS collars. In my current situation the radio-collars
recorded the locations of 30 caribou every 6 hours. I am then comparing
resources used at caribou locations to random locations using logistic
regression (standard habitat analysis).
The data is therefore highly autocorrelated and this causes Type
2007 Nov 13
2
negative binomial lmer
Hi
I am running an lmer which works fine with family=poisson
mixed.model<-lmer(nobees~spray+dist+flwabund+flwdiv+round+(1|field),family="poisson",method="ML",na.action=na.omit)
But it is overdispersed. I tried using family=quasipoisson but get no P
values. This didnt worry me too much as i think my data is closer to
negative binomial but i cant find any examples of