Displaying 20 results from an estimated 5000 matches similar to: "SVM comparison"
2010 Sep 24
0
kernlab:ksvm:eps-svr: bug?
Hi,
A. In a nutshell:
The training error, obtained as "error (ret)", from the return value
of a ksvm () call for a eps-svr model is (likely) being computed
wrongly. "nu-svr" and "eps-bsvr" suffer from this as well.
I am attaching three files: (1) ksvm.R from the the kernlab package,
un-edited, (2) ksvm_eps-svr.txt: (for easier reading) containing only
eps-svr
2007 Sep 12
0
one-class SVM in kernlab
Hello,
I'm trying to using ksvm() in the kernlab package to fit a one-class
SVC, but I get a strage result on the cross-validation error estimate.
For example, consider this code:
data(spam)
classifier <- ksvm(type~.,data=spam[which(spam[,'type']=='spam'),],
type="one-svc",kernel="rbfdot",kpar=list(sigma=0.1),nu=0.05,cross=10)
what I get is:
>
2009 Dec 25
2
Help with SVM package Kernlab
Hi useR's,
I am resending this request since I got no response for my last post and I
am new to the list so pardon me if I am violating the protocol.
I am trying to use the "Kernlab" package for training and prediction using
SVM's. I am getting the following error when I am trying to use the predict
function:
> predictSvm = predict(modelforSVM, testSeq);
Error in
2007 Aug 14
0
kernlab ksvm() cross-validation prediction response vector
Hello,
I would like to know, whether for the support vector classification function ksvm()
the response values stored in object at ymatrix are cross validated outputs/predictions:
Example code from package kernlab, function ksvm:
library(kernlab)
## train a support vector machine
filter <- ksvm(type~.,data=spam,kernel="rbfdot",kpar=list(sigma=0.05),C=5,cross=3)
filter
filter at
2009 Dec 24
0
Error with Package "Kernlab" for SVM prediction
Hi All,
I am trying to use the "Kernlab" package for training and prediction using
SVM's. I am getting the following error when I am trying to use the predict
function:
> predictSvm = predict(modelforSVM, testSeq);
Error in `contrasts<-`(`*tmp*`, value = "contr.treatment") :
contrasts can be applied only to factors with 2 or more levels
The training file is a
2012 Nov 15
1
Can't see what i did wrong..
with
pred.pca<-predict(splits[[i]]$pca,trainingData at samples)[,1:nPCs]
dframe<-as.data.frame(cbind(pred.pca,class=isExplosive(trainingData,2)));
results[[i]]$classifier<-ksvm(class~.,data=dframe,scaled=T,kernel="polydot",type="C-svc",
C=C,kpar=list(degree=degree,scale=scale,offset=offset),prob.model=T)
and a degree of 5 i get an error of 0 reported by the ksvm
2008 Sep 14
0
ksvm accessing the slots of S4 object
I am using kernlab to build svm models. I am not sure how to access the different slots of the object. For instance if I want to get the nuber of support vectors for each of model I am building and store it in a vector.
>ksvm.model <- ksvm(Class ~ ., data = somedata,kernel = "vanilladot", cross = 10, type ="C-svc")
>names(attributes(ksvm.model))
[1] "param"
2011 Oct 06
0
linear classifiers with sparse matrices
I've been trying to get some linear classifiers (LiblineaR, kernlab,
e1071) to work with a sparse matrix of feature data. In the case of
LiblineaR and kernlab, it seems I have to coerce my data into a dense
matrix in order to train a model. I've done a number of searches,
read through the manuals and vignettes, but I can't seem to see how to
use either of these packages with sparse
2011 May 26
0
R svm prediction kernlab
Hi All,
I am using ksvm method in kernlab R package for support vector
machines. I learned the multiclass one-against-one svm from training data
and using it to classify new datapoints. But I want to update/finetune the
'svm weights' based on some criteria and use the updated svm weights in the
predict method framework. I don't know if its possible or not, how do
classify new
2009 Oct 23
1
Data format for KSVM
Hi,
I have a process using svm from the e1071 library. it works.
I want to try using the KSVM library instead. The same data used wiht
e1071 gives me an error with KSVM.
My data is a data.frame.
sample code:
svm_formula <- formula(y ~ a + B + C)
svm_model <- ksvm(formula, data=train_data, type="C-svc",
kernel="rbfdot", C=1)
I get the following error:
2006 Nov 24
1
How to find AUC in SVM (kernlab package)
Dear all,
I was wondering if someone can help me. I am learning SVM for
classification in my research with kernlab package. I want to know about
classification performance using Area Under Curve (AUC). I know ROCR
package can do this job but I found all example in ROCR package have
include prediction, for example, ROCR.hiv {ROCR}. My problem is how to
produce prediction in SVM and to find
2012 Jul 31
1
kernlab kpca predict
Hi!
The kernlab function kpca() mentions that new observations can be transformed by using predict. Theres also an example in the documentation, but as you can see i am getting an error there (As i do with my own data). I'm not sure whats wrong at the moment. I haven't any predict functions written by myself in the workspace either. I've tested it with using the matrix version and the
2012 Sep 13
0
I need help for svm package kernlab in R
I use the svm package kernlab .I have two question.
In R
library(kernlab)
m=ksvm(xtrain,ytrain,type="C-svc",kernel=custom function, C=10)
alpha(m)
alphaindex(m)
I can get alpha value and alpha index about package.
1.
Assumption that number of sample are 20.
number of support vectors are 15.
then rest 5`s alphas are 0?
2. I want use kernelMatrix
xtrain=as.matrix(xtrain)
2010 Jun 11
1
Decision values from KSVM
Hi,
I'm working on a project using the kernlab library.
For one phase, I want the "decision values" from the SVM prediction, not
the class label. the e1071 library has this function, but I can't find
the equivalent in ksvm.
In general, when an SVM is used for classification, the label of an
unknown test-case is decided by the "sign" of its resulting value as
2010 Apr 06
3
svm of e1071 package
Hello List,
I am having a great trouble using svm function in e1071 package. I have 4gb of data that i want to use to train svm. I am using Amazon cloud, my Amazon Machine Image(AMI) has 34.2 GB of memory. my R process was killed several times when i tried to use 4GB of data for svm. Now I am using a subset of that data and it is only 1.4 GB. i remove all unnecessary objects before calling
2009 Apr 28
1
kernlab - custom kernel
hi,
I am using R's "kernlab" package, exactly i am doing classification using
ksvm(.) and predict.ksvm(.).I want use of custom kernel. I am getting some
error.
# Following R code works (with promotergene dataset):
library("kernlab")
s <- function(x, y) {
sum((x*y)^1.25)
}
class(s) <- "kernel"
data("promotergene")
gene <- ksvm(Class ~ .,
2009 Nov 29
2
kernlab's ksvm method freeze
Hello,
I am using kernlab to do some binary classification on aminoacid
strings.
I am using a custom kernel, so i use the kernel="matrix" option of the
ksvm method.
My (normalized) kernel matrix is of size 1309*1309, my results vector
has the same length.
I am using C-svc.
My kernlab call is something similiar to this:
ksvm(kernel="matrix", kernelMatrix, trainingDataYs,
2011 Jul 19
1
Writing the output of a regression object to a file
Hi,
I'm using R 2.12.0 on Windows XP.
I've used the e1071 package to tune a Support Vector Regression object
and I've created the SVR object:
> epsilon.svr <- svm(C8R004 ~.,data = rain_flow.train, scale = T, type = "eps-regression",
+ kernel = "radial", cost = 0.9, epsilon=0.55,tolerance=0.001,
shrinking=T, gamma=0.18,fitted=T)
> esvr.pred <-
2009 Jul 23
0
How to get w in SVR with e1071 package
>
> Hi all,
>
> I need some help about how to calculate w in a SVR in package e1071.
>
> I have a regression y_i=f(x_i)+e
>
> where f(*x*)=(w,phi(x))+b
>
> then go on with the SVR calculation I know that w*=Sum_i=1^n [(á_i -
> á*_i)K(x,x_i) ] where á_i and á*_i are the lagrangian multipliers of the
> dual form.
>
> o.k but how I will get it in R?
>
>
2007 Oct 30
0
kernlab/ ksvm: class.weights & prob.model in binary classification
Hello list,
I am faced with a two-class classification problem with highly asymetric
class sizes (class one: 99%, class two: 1%).
I'd like to obtain a class probability model, also introducing available
information on the class prior.
Calling kernlab/ksvm with the line
>
ksvm_model1<-ksvm(as.matrix(slides), as.factor(Class), class.weights= c("0"
=99, "1" =1),