Displaying 20 results from an estimated 500 matches similar to: "Need Help! Poor performance about randomForest for large data"
2018 Jan 20
2
Random Forests
Si, Carlos. Yo hago lo mismo, pero esos mismos numeritos salen enormes.
> treesize(RFfit)
[1] 4304 4302 4311 4319 4343 4298 4298 4311 4349 4327 4331 4317
4294 4321 4283 4362
[17] 4300 4330 4266 4331 4308 4352 4294 4315 4372 4349 4331 4347
4329 4348 4298 4335
[33] 4346 4396 4345 4313 4293 4276 4353 4272 4304 4325 4317 4336
4308 4351 4374 4324
[49] 4386 4359 4311 4346 4300
2018 Jan 22
2
Random Forests
Muchas gracias Carlos, como siempre.
Es raro que se me pasase. En su momento miré todos los argumentos del
RF, como hago siempre, pero ese lo había olvidado. La verdad es que
funcionaba estupendamente, pero me parecía extraño. Aunque dado que
los RF no sobreajustan, no hay problema con que sus árboles sean todo
lo grandes que quieras. Lo he testado con una base de datos externa y
explica
2014 Mar 11
4
[PATCH] add mips64 support
From: Dejan Latinovic <Dejan.Latinovic at imgtec.com>
---
usr/include/arch/mips64/klibc/archconfig.h | 3 +
usr/include/arch/mips64/klibc/archsetjmp.h | 39 ++++++
usr/include/arch/mips64/machine/asm.h | 76 ++++++++++
usr/include/fcntl.h | 2 +-
usr/include/sys/md.h | 1 +
usr/include/sys/resource.h | 4 +-
2016 Nov 08
2
[MC] Target-Independent Small Data Section Handling
Oh, one thing I forgot to mention:
ReadOnly objects are also counted as small data globals on PPC (on top of BSS, Data, Common). That's what the r2 base is for (.sdata2, defined to be constant data). 32-bit immediate loads take 2 ops minimum on PPC, so even constant loading benefits from small data.
It'd be handy to add a third argument containing what kind would normally be returned:
2023 May 09
1
RandomForest tuning the parameters
Hi Sacha,
On second thought, perhaps this is more the direction that you want ...
X2 = cbind(X_train,y_train)
colnames(X2)[3] = "y"
regr2<-randomForest(y~x1+x2, data=X2,maxnodes=10, ntree=10)
regr
regr2
#Make prediction
predictions= predict(regr, X_test)
predictions2= predict(regr2, X_test)
HTH,
Eric
On Tue, May 9, 2023 at 6:40?AM Eric Berger <ericjberger at gmail.com>
2019 Jan 18
0
[klibc:master] mips: use -Ttext-segment when linking shared library
Commit-ID: 048bfb0df170d4a43142adcee8a2dffdfc2c1e9f
Gitweb: http://git.kernel.org/?p=libs/klibc/klibc.git;a=commit;h=048bfb0df170d4a43142adcee8a2dffdfc2c1e9f
Author: James Cowgill <james.cowgill at mips.com>
AuthorDate: Fri, 2 Mar 2018 08:33:01 -0800
Committer: Ben Hutchings <ben at decadent.org.uk>
CommitDate: Wed, 2 Jan 2019 03:08:04 +0000
[klibc] mips: use -Ttext-segment
2018 Mar 29
2
Pasar argunmentos string a una formula
Buenas
Tengo en un string guardado lo siguiente:
> parametros
[1] "ntree=10" "ntree=30" "ntree=50" "ntree=100" "ntree=200"
Con un bucle for quiero ir metiendolo en el modelo, pero no se muy bien como hacerlo, ya que con deparse no me funciona, con get tampoco (obvio, no es un objeto), y no se muy bien como hacerlo de manera dinamica
2019 Jan 21
0
[PATCH] ia64: Fix shared build
We need to build with -mno-pic to disable all uses of GP, as well as use
a custom linker script to avoid collisions between klibc.so's and the
executable's segments.
Signed-off-by: James Clarke <jrtc27 at jrtc27.com>
---
usr/klibc/arch/ia64/MCONFIG | 3 +
usr/klibc/arch/ia64/crt0.S | 4 -
usr/klibc/arch/ia64/klibc.ld | 267 ++++++++++++++++++++++++++++++++++++++++++
2019 Jan 21
0
[klibc:master] ia64: Fix shared build
Commit-ID: 8418552770110e9864ab24d60d8481fac58d3a65
Gitweb: http://git.kernel.org/?p=libs/klibc/klibc.git;a=commit;h=8418552770110e9864ab24d60d8481fac58d3a65
Author: James Clarke <jrtc27 at jrtc27.com>
AuthorDate: Mon, 21 Jan 2019 21:26:57 +0000
Committer: Ben Hutchings <ben at decadent.org.uk>
CommitDate: Mon, 21 Jan 2019 22:51:27 +0000
[klibc] ia64: Fix shared build
We
2010 Jan 15
1
randomForest maxnodes
Has anyone sucessfully used the maxnodes feature in randomForest? I tried
setting it, but when it is non-NULL I always get back a forest in which all
trees have size 1. I am using a continuous response (regression). Any help
would be appreciated.
Thanks.
[[alternative HTML version deleted]]
2014 Dec 17
3
Problema con el subset
Hola a todos,
Agradeceros de antemano vuestro tiempo y paciencia ya que soy un poco
novato y tal vez esto sea un poco trivial.
Lo que quiero hacer es que me represente en eje de las x las fechas
(columna fecha) y los valores de z (columna z) pero de los datos que he
filtrado antes en
(dfgrupo<-subset(df,df$parametroslaboratorio=="Aflatoxinas ByG")) y que los
parámetros iguales
2018 Mar 02
5
[PATCH 0/5] Various MIPS fixes
Hi,
I noticed that klibc started crashing on 64-bit MIPS and in my quest to fix the
bug I got a bit carried away and fixed a few other things as well. Here are
various miscellaneous MIPS patches, although the first patch is the important
one.
Thanks,
James
*** BLURB HERE ***
James Cowgill (5):
mips64: compile with -mno-abicalls
mips: use -Ttext-segment when linking shared library
2018 Jan 17
4
Random Forests
Buenas tardes a todos. El paquete randomForest tiene la función
treesize, que es el nº de nodos. Me dan valores realmente elevados (en
torno a 1000), y eso me parece extraño. ¿sabéis si es así?
Gracias,
Manuel
--
Dr Manuel Mendoza
Department of Biogeography and Global Change
National Museum of Natural History (MNCN)
Spanish Scientific Council (CSIC)
C/ Serrano 115bis, 28006 MADRID
Spain
2018 Jan 20
2
Random Forests
Gracias Carlos y Javier, ntrees es el nº de árboles y treesize sus
respectivos tamaños (nº de nodos)
ntree: Number of trees to grow. This should not be set to too small ......
treesize: Size of trees (number of nodes) in and ensemble.
Puse 1000 árboles (ntree=1000), si, pero la función treesize te da el
nº de nodos:
treesize(RFfit, terminal=TRUE) me da un vector de 1000 elementos (uno
2013 Mar 24
1
Random Forest, Giving More Importance to Some Data
Dear All,
I am using randomForest to predict the final selling price of some items.
As it often happens, I have a lot of (noisy) historical data, but the
question is not so much about data cleaning.
The dataset for which I need to carry out some predictions are fairly
recent sales or even some sales that will took place in the near future.
As a consequence, historical data should be somehow
2006 Jun 26
2
[klibc 28/43] mips support for klibc
The parts of klibc specific to the mips architecture.
Signed-off-by: H. Peter Anvin <hpa at zytor.com>
---
commit 8dc79563c06020d8844b9e9b821741828039b59e
tree b957c8fb1fddf486f5c26b1880726051d4f6aaad
parent bc9b363b31d301ab94c115cccc2e079c0d318498
author H. Peter Anvin <hpa at zytor.com> Sun, 25 Jun 2006 16:58:31 -0700
committer H. Peter Anvin <hpa at zytor.com> Sun, 25 Jun
2013 Mar 26
2
Problem with nested for-loop
Hello,
I'm working on a problem using nested for-loops and I don't know if it's a
problem with the order of the loops or something within the loop so any
help with the problem would be appreciated. To briefly set up the problem.
I have 259 trees (from 11 different species, of unequal count for each
species) of which I am trying to predict biomass. For each tree species I
have 10000
2018 Jan 20
2
Paquete pdp
Buenas. El Paquete pdp es muy fácil de usar, pero cuando se lo aplico
a mis datos me da:
Error in eval(stats::getCall(object)$data) : object 'x.data' not found.
Os copio abajo un ejemplo de aplicación a un RF. El mio es de un
boosted regression trees (paquete gbm). No sé si esa puede ser la
razón del error. En el paquete pdp no especifica que sea solo para RF,
aunque en los
2012 Dec 03
1
How do I make R randomForest model size smaller?
I've been training randomForest models on 7 million rows of data (41
features). Here's an example call:
myModel <- randomForest(RESPONSE~., data=mydata, ntree=50, maxnodes=30)
I thought surely with only 50 trees and 30 terminal nodes that the memory
footprint of "myModel" would be small. But it's 65 megs in a dump file. The
object seems to be holding all sorts of
2004 Apr 05
3
Can't seem to finish a randomForest.... Just goes and goe s!
When you have fairly large data, _do not use the formula interface_, as a
couple of copies of the data would be made. Try simply:
Myforest.rf <- randomForest(Mydata[, -46], Mydata[,46],
ntrees=100, mtry=7)
[Note that you don't need to set proximity (not proximities) or importance
to FALSE, as that's the default already.]
You might also want to use